Fisiologia do Sistema Endócrino

Fisiologia do Sistema Endócrino

(Parte 1 de 2)

IX – Endocrinologia e Reprodução

1 – Introdução à Endocrinologia. Os Hormônios Hipofisários.

As funções corporais são reguladas por dois sistemas principais: o sistema nervoso e o sistema hormonal ou endócrino. O sistema hormonal está envolvido com o controle das funções metabólicas. Existem muitas inter-relações entre os sistemas hormonal e nervoso. Pelo menos duas glândulas, por exemplo, as medulas supra-renais e a hipófise posterior, só secretam seus hormônios em resposta a estímulos nervosos e os hormônios da hipófise anterior em sua maioria só são secretados em resposta à ocorrência de atividade nervosa e neuroendócrina no hipotálamo.

Um hormônio é uma substância química secretada nos líquidos internos do corpo por uma célula ou por um grupo de células e que exerce efeito fisiológico de controle sobre outras células do corpo. Os hormônios são divididos em locais e gerais. São exemplos de hormônios locais a acetilcolina, liberada nas terminações nervosas parassimpáticas e esqueléticas; a secretina, liberada pela parede duodenal e levada pelo sangue até o pâncreas, estimulando a produção de uma secreção pancreática aquosa e alcalina; e a colecistocinina, que, liberada no intestino delgado, causa a contração da vesícula biliar e promove a secreção de enzimas pelo pâncreas.

Os hormônios gerais são secretados por glândulas endócrinas específicas localizadas em diferentes pontos do corpo. Esses hormônios são secretados para o sangue, causando ações fisiológicas em tecidos distantes.

Hormônios da Hipófise Anterior

do leite

1.O hormônio do crescimento causa o crescimento de quase todas as celulas e tecidos do corpo. 2.A corticotropina faz com que o córtex supra-renal secrete os hormônios córtico-supra-renais. 3.O hormônio estimulador da tireóide faz a glândula tireóide secretar tiroxina e triiodotironina. 4.O hormônio folículo-estimulante determina o crescimento dos folículos nos ovários antes da ovulação; também promove a formação dos espermatozóides nos testículos. 5.O hormônio luteinizante contribui significativamente para causar a ovulação; também promove a secreção de hormônios sexuais femininos pelos ovários e da testosterona pelos testículos. 6.A prolactina promove o desenvolvimento das mamas e a secreção Hormônios da Hipófise Posterior

1.O hormônio antidiurético (vasopressina) faz os rins reterem água; em concentrações mais elevadas, também causa constrição dos vasos sanguíneos em todo o corpo e eleva a pressão sanguínea 2.A ocitocina contrai o útero durante o processo do parto; também produz contração das células mioepiteliais das mamas, assim espremendo o leite das glândulas mamárias quando o bebê suga.

Hormônios do Córtex Supra-Renal

1.O cortisol exerce múltiplas funções no controle do metabolismo de proteínas, carboidratos e lipídios. 2.A aldosterona reduz a excreção de sódio pelos rins e aumenta a excreção de potássio

Hormônios da Glândula Tireóide

1.A tiroxina e a triiodotironina aumentam a velocidade das reações químicas em quase todas as células do corpo, aumentando assim o nível geral do metabolismo corporal. 2.A calcitonina promove a deposição de cálcio nos ossos, diminuindo assim a concentração de cálcio no líquido extracelular.

Hormônios das Ilhotas de Langerhans do Pâncreas

1.A insulina promove a entrada de glicose na maioria das células corporais 2.O glucagon aumenta a liberação de glicose do fígado para os líquidos corporais.

Hormônios dos Ovários

1.Os estrogênios estimulam o desenvolvimento dos órgãos sexuais femininos, das mamas e de diversas características sexuais secundárias. 2.A progesterona estimula a secreção do “leite uterino” pelas glândulas do endométrio uterino; também ajuda a promover o desenvolvimento do aparelho secretor das mamas.

Hormônios dos Testículos

1.A testosterona estimula o crescimento dos órgãos sexuais masculinos; também promove o desenvolvimento das características sexuais secundárias masculinas.

Hormônio da Glândula Paratireóide

1.O paratormônio regula a concentração do íons cálcio no corpo controlando a absorção de cálcio pelo tubo digestivo, a excreção de cálcio pelos rins e a liberação de cálcio dos ossos.

Hormônios Placentários

1.A gonadotrofina coriônica humana promove o crescimento do corpo lúteo e a secreção de estrogênios e de progesterona pelo corpo lúteo. 2.Os estrogênios promovem o cresciemento dos órgãos sexuais da mãe e de alguns dos tecidos do feto. 3.A progesterona promove o desenvolvimento especial do endométrio uterino antes da implantação do óvulo fertilizado

Mecanismos da Ação Hormonal

Quase invariavelmente os hormônios combinam-se, de início, com receptores hormonais localizados na superfície da membrana celular ou no interior das células desencadeando uma cascata de reações.

A maioria dos hormônios está presente no sangue em quantidades extremamente pequenas. Por essa razão, exceto em alguns casos, é praticamente impossível medir essas concentrações pelos meios químicos habituais. Entretanto, existe um método extremamente sensível que revolucionou a dosagem dos hormônios. Tal método é o radioimunoensaio.

O sistema porta-hipofisário é constituído por pequenos vasos comuns ao hipotálamo inferior e à hipófise anterior, unidos através do infundíbulo. Neurônios especiais, situados no hipotálamo, sintetizam e secretam os hormônios hipotalâmicos liberadores e inibidores. A função desses hormônios é a de controlar a secreção dos hormônios da hipófise anterior.

núcleos paraventriculares

A hipófise posterior não secreta hormônios, ela armazena os hormônios que são transportados do hipotálamo através do tracto hipotálamo-hipofisário. O ADH é formado principalmente nos núcleos supra-ópticos, enquanto a ocitocina é formada principalmente nos

2 – Os Hormônios Metabólicos da Tireóide

A glândula tireóide secreta grande quantidade de dois hormônios, a tiroxina (T4) e a triiodotironina (T3), que exercem profundo efeito sobre o metabolismo corporal. As funções desses hormônios são qualitativamente idênticas, porém diferem quanto à rapidez e a intensidade de ação. A glândula tireóide é composta de grande número de folículos fechados, preenchidos por uma substância secretora denominada colóide e revestidos por células epitelióides cubóides que lançam suas secreções no interior dos folículos.

Os hormônios da tireóide são então absorvidos pelo sangue e transportados às outras partes do organismo para realizar sua função. Para que seja formada a quantidade normal de tiroxina e triiodotironina, têm que ser ingeridos cerca de 50 mg de iodo a cada ano, aproximadamente 1 mg por semana. O efeito geral do hormônio da tireóide é o de causar, por atacado, a transcrição nuclear de grande número de genes. Como consequência, em virtualmente todas as células corporais ocorre aumento de grande número de enzimas protéicas, proteínas estruturais, proteínas transportadoras e outras substâncias.

O resultado final disso tudo é um aumento generalizado da atividade funcional em todo o corpo. A regulação da secreção do hormônio da tireóide é feita através do hormônio tíreo-estimulante (TSH), também conhecido como tireotropina, produzido pela hipófise anterior. A secreção de TSH é regulada pelo hormônio liberador de tireotropina (TRH), produzido pelo hipotálamo. As principais doenças da tireóide são o hipertireoidismo e o hipotireoidismo. No hipertireoidismo, são encontrados no sangue dos pacientes anticorpos com ações semelhantes às do TSH. Esses anticorpos se ligam aos mesmos receptores aos quais o TSH se fixa, de modo que isso provoca uma continuada ativação das células.

Os anticorpos causadores do hipertireoidismo se formam quase certamente em consequência de auto-imunidadedesenvolvida contra o tecido da tireóide. Assim, ao contrário do que se poderia esperar, demonstrou-se através de radioimunoensaio que as concentrações plasmáticas de TSH estão abaixo do normal no hipertireoidismo. Os efeitos do hipotireoidismo são geralmente opostos aos do hipertireoidismo. Uma das principais características do hipotireoidismo é o bócio endêmico.

O mecanismo do desenvolvimento dos grandes bócios endêmicos é o seguinte: A falta do iodo impede a produção do hormônio da tireóide por essa glândula; como consequência, não há hormônio disponível para inibir a produção de TSH pela hipófise anterior através do mecanismo de feedback, o que possibilita à hipófise secretar quantidade excessivamente grande de TSH. Este, então, faz as células da tireóide secretarem quantidade enorme de tireoglobulina (colóide) para o interior dos folículos, e a glândula fica cada vez maior.

A glândula supra-renal divide-se em medula supra-renal e córtex supra-renal. A medula supra-renal secreta os hormônios epinefrina e norepinefrina em resposta à estimulação simpática. Esses hormônios causam praticamente os mesmos efeitos que a estimulação direta dos nervos simpáticos em todas as partes do corpo. O córtex supra-renal secreta um grupo totalmente diferente de hormônios, denominados corticosteróides.

Os dois tipos principais de corticosteróides são os mineralocorticóides e os glicocorticóides. Os mineralocorticóides afetam especialmente os eletrólitos dos líquidos extracelulares – particularmente o sódio e o potássio. Os glicocorticóides, por sua vez, aumentam a concentração sanguínea de glicose. Contudo, eles exercem efeitos adicionais sobre o metabolismo das proteínas e dos lipídios. Os esteróides de maior importância para a função endócrina do corpo humano são a aldosterona, que é o principal mineralocorticóide, e o cortisol ou hidrocortisona, que é o principal glicocorticóide.

A função sem dúvida mais importante da aldosterona é a de promover o transporte de sódio e potássio através das paredes dos túbulos renais e, em menor grau, o transporte de hidrogênio. Os principais efeitos do cortisol sobre o metabolismo dos carboidratos são a estimulação da gliconeogênese hepática (formação de glicose a partir das proteínas e de algumas outras substâncias), a diminuição da utilização de glicose pelas células e a elevação da concentração sanguínea de glicose.

O cortisol possui efeitos antiinflamatórios agindo sobre a enzima fosfolipase A2, importante para a formação do ácido araquidônico. Alguns tipos de estresse aumentam a liberação de cortisol como os traumas, infecção e cirurgias. A secreção de aldosterona pelo córtex supra-renal é controlada principalmente pela ação direta do potássio e da angiotensina sobre as células córtico-supra-renais.

cortisol em um córtex supra-renal

A regulação da secreção de cortisol é feita pelo hormônio corticotrópico (ACTH) produzido pela hipófise anterior. A secreção de ACTH, por sua vez, é controlada pelo hormônio liberador da corticotropina produzido pelo hipotálamo. O cortisol tem efeitos diretos de feedback negativo sobre o hipotálamo diminuindo a formação do hormônio liberador de corticotropina e sobre a hipófise anterior diminuindo a formação de ACTH. O hipocorticalismo provoca a Doença de Addison ocasionada por atrofia dos córtices supra-renais decorrente provavelmente de auto-imunidade aos córtices e o hipercorticalismo provoca a doença de Cushing, consequente a um tumor secretor de

4 – Insulina, Glucagon e Diabetes Melito

Além das funções digestivas, o pâncreas secreta dois hormônios importantes, a insulina e o glucagon. O pâncreas é composto por dois tipos principais de estruturas: os ácinos, que secretam sucos digestivos para o duodeno e as ilhotas de Langerhans, que secretam insulina e glucagon diretamente para o sangue. As ilhotas de Langerhans do ser humano contém três tipos principais de células, alfa, beta e delta.

As células beta secretam insulina, as células alfa secretam glucagon e as células delta secretam somatostatina, cujas funções mais importantes não foram totalmente esclarecidas. A função básica da insulina é a ativação dos receptores das células-alvo e os consequentes efeitos celulares. O principal efeito celular da insulina é o de tornar as membranas celulares altamente permeáveis à glicose.

Imediatamente após uma refeição rica em carboidratos, a glicose que é absorvida pelo sangue causa uma rápida secreção de insulina. Esta, por sua vez, promove a captação, o armazenamento e a rápida utilização da glicose por quase todos os tecidos corporais, mas especialmente pelos músculos, pelo tecido adiposo e pelo fígado.

Quando os músculos não estão sendo exercitados durante o período subsequente a uma refeição e ainda assim a glicose está sendo transportada em abundância para as células musculares, a maior parte da glicose é armazenada sob a forma de glicogênio muscular que pode ser utilizado posteriormente para fins energéticos. De todos os efeitos da insulina, um dos mais importantes é fazer com que a maior parte da glicose absorvida após uma refeição seja quase imediatamente armazenada no fígado, sob a forma de glicogênio.

Assim, o fígado remove glicose do sangue quando ela está presente em excesso após uma refeição e a devolve ao sangue quando sua concentração sanguínea cai entre as refeições. O cérebro é muito diferente da maioria dos outros tecidos do corpo, na medida em que nele a insulina exerce pouco ou nenhum efeito sobre a captação ou a utilização da glicose. Em vez disso, as células cerebrais são permeáveis à glicose e podem utilizá-la sem a intermediação da insulina. As células cerebrais também são muito diferentes da maioria das outras células do corpo, na medida em que normalmente utilizam apenas glicose para fins energéticos.

Por esta razão, é essencial que o nível sanguíneo de glicose seja sempre mantido acima de um nível crítico. Quando a glicemia efetivamente cai em demasia, ocorrem sintomas de choque hipoglicêmico, caracterizado por irritabilidade nervosa progressiva que leva a desfalecimento, convulsões e mesmo coma. Todos os aspectos da degradação e utilização da gordura para fornecimento de energia experimentam grande incremento na ausência de insulina.

A concentração sanguínea de glicose e a secreção de insulina possuem uma relação de feedback. Quando a glicemia aumenta, a secreção de insulina aumenta rapidamente. O glucagon exerce várias funções opostas às da insulina. A mais importante delas é seu efeito de aumentar a concentração sanguínea de glicose. A injeção de glucagon purificado num animal produz intenso efeito hiperglicêmico. Os dois principais efeitos do glucagon sobre o metabolismo da glicose são a decomposição do glicogênio hepático (glicogenólise) e o aumento da gliconeogênese. O aumento da glicose sanguínea inibe a secreção de glucagon.

Em pessoas normais, a concentração sanguínea de glicose é mantida dentro de limites muito estreitos, em geral na faixa de 80 a 90 mg/dl de sangue quando em jejum podendo chegar a 140 mg/dl após uma refeição. O fígado funciona como um importante sistema tampão para a glicose sanguínea. Alguém poderia perguntar por que é tão importante a manutenção da constância da concentração sanguínea de glicose, especialmente pelo fato de muitos tecidos poderem passar a utilizar lipídios e proteínas para fins energéticos na ausência de glicose? A resposta é que a glicose é o único nutriente que pode normalmente ser utilizado pelo cérebro, pela retina e pelo epitélio germinativo das gônadas em quantidade adequada para supri-los da energia de que necessitam.

(Parte 1 de 2)

Comentários