apostila de irrigação completa

apostila de irrigação completa

(Parte 1 de 8)

PROF. LEONARDO DUARTE BATISTA DA SILVA, D.S. ABRIL – 2007

Este material se constitui no principal apoio à condução das disciplinas IT 115 – Irrigação e Drenagem, oferecida ao curso de Licenciatura em Ciências Agrícolas e IT 157 – Irrigação, oferecida aos cursos de Agronomia e Engenharia Agrícola.

É um paradoxo a Terra se mover ao redor do Sol e a água ser constituída por dois gases altamente inflamáveis. A verdade científica é sempre um paradoxo, se julgada pela experiência cotidiana que se agarra à aparência efêmera das coisas.

Karl Marx

Quero expressar o meu agradecimento todo especial ao jovem Professor

Leonardo Duarte Batista da Silva, um grande e sincero amigo e excepcional figura humana, por ter contribuído de forma brilhante e competente para a melhoria do presente material, opinando sempre de maneira correta sobre o que já estava produzido, e ampliando-o com muita propriedade intelectual. Aproveito a oportunidade para parabenizá-lo pela forma magnífica e categórica que o fez brilhantemente o primeiro colocado em concurso público para Professor da UFRRJ, fato este que só veio ratificar a sua competência. Por certo, além de nos brindar com a sua convivência no dia a dia, ele irá trazer uma grande e importante contribuição à área de Recursos Hídricos do Departamento de Engenharia. Seja bem-vindo meu caro amigo.

UFRRJ, julho de 2006. PROF. JORGE LUIZ PIMENTA MELLO

Deixo, aqui registrado a minha satisfação em participar desse trabalho com o

Professor Jorge Luiz Pimenta Mello, que desde quando cheguei à UFRRJ em 2002, foi sempre uma referência, um incentivador e um grande amigo. Espero que esse trabalho seja apenas o primeiro de muitos, que com certeza ainda virão. Obrigado pela oportunidade de ser co-autor deste texto que visa promover o ensino público, gratuito e de qualidade, cuja meta principal é contribuir para construção de um país melhor para todos.

UFRRJ, outubro de 2006. PROF. LEONARDO DUARTE BATISTA DA SILVA

Pág.

Capítulo I – Introdução ao estudo da irrigação I.1 1.1 – Considerações iniciais I.1 1.2 – Histórico e desenvolvimento I.1 1.3 – A irrigação no Brasil e no mundo I.4 1.4 – Área irrigada e métodos de irrigação utilizados nas diferentes regiões do

Brasil I.8

1.5 – A irrigação e o meio ambiente I.12 1.6 – Contaminação dos mananciais hídricos I.13 1.7 – Cobrança pelo uso da água para irrigação I.14 1.8 – Tipos de sistemas I.16 1.9 – Critérios para a seleção do método I.16 1.10 – Vantagens da irrigação I.17

Capítulo I – Estudos Climáticos: Evapotranspiração I.1 2.1 – Introdução I.1 2.2 – Conceitos fundamentais I.3 2.3 – Fatores intervenientes no processo de evapotranspiração I.3 2.4 – Evapotranspiração potencial das culturas e a de referência I.4 2.5 – Quantificação da evapotranspiração I.6 2.5.1 – Métodos diretos I.8 2.5.1.1 – Lisímetros I.8 2.5.1.2 – Parcelas experimentais no campo I.1 2.5.2 – Métodos indiretos I.12 2.5.2.1 – Tanque Evaporimétrico “Classe A” I.12 2.5.2.2 – Método de Thornthwaite I.16 2.5.2.3 – Método de Blaney-Criddle modificado (FAO) I.19 2.4.2.3 – Método da Radiação I.23 2.4.2.4 – Método de Hargreaves – Samani I.27 2.4.2.5 – Método de Penman-Monteith-FAO I.29

Capítulo I – Estudos Pedológicos I.1 3.1 – Disponibilidade de água no solo I.1 3.2 – Infiltração da água no solo I.6 3.2.1 – Introdução I.6 3.2.2 – Equações representativas da infiltração I.8 3.2.2.1 – Equação tipo potencial I.8 3.2.2.1 – Equação tipo potencial modificada (equação de Kostiakov-Lewis) I.12 3.2.3 – Métodos de determinação de Vi e I I.13 3.2.3.1 – Método do infiltrômetro de anel I.13 3.2.3.2 – Método do infiltrômetro de sulco I.14 3.2.3.3 – Método da entrada e saída da água no sulco I.15 3.2.4 – Resolução da equação de infiltração utilizando o método numérico de

Newton-Raphson I.19

Capítulo IV – Sistemas de Irrigação IV.1 4.1 – Introdução IV.1 4.2 – Parâmetros para o dimensionamento de um sistema de irrigação IV.2 4.3 – Classificação dos sistemas de irrigação IV.5 4.4 – Fatores que influenciam na escolha do método de irrigação IV.5

Capítulo V – Irrigação por Aspersão V.1 5.1 – Introdução V.1

5.1.1. – Forma de aplicação da água V.1

5.2 – Vantagens e limitações do sistema V.3

5.3 – Componentes do sistema V.4 5.3.1 – Aspersores V.4 5.3.1.2 – Classificação quanto ao mecanismo de rotação V.5 5.3.1.3 – Classificação quanto à pressão de serviço do aspersor V.5 5.3.2 – Tubulações V.5 5.3.3 – Moto-bomba V.6 5.3.4 – Acessórios V.6 5.4 – Classificação dos sistemas por aspersão V.6 5.5 – Disposição dos aspersores no campo V.7 5.6 – Fatores que afetam o desempenho de um aspersor V.8 5.6.1 – Bocais dos aspersores V.8 5.6.2 – Pressão de serviço dos aspersores V.8 5.6.3 – Superposição V.8 5.6.4 – Ventos V.9 5.7 – Vazão dos aspersores V.9 5.8 – Intensidade de precipitação dos aspersores V.9 5.9 – Seleção do aspersor V.9 5.10 – Dimensionamento das tubulações V.10 5.10.1 – Linhas laterais V.10 5.10.1.1 – Considerações sobre perda de carga (hf) nas linhas laterais V.12 5.12.1.2 – Determinação do fator de Christiansen V.12 5.10.1.3 – Procedimento para dimensionamento de L com dois diâmetros V.15 5.10.1.4 – Relação entre a pressão no início da L, no final e pressão média V.20 5.10.1.5 – Linhas ou ramais de espera em sistemas por aspersão V.2 5.10.2 – Linha principal V.25 5.1 – Altura manométrica total V.27 5.12 – Potência do conjunto moto-bomba V.27 5.13 – Projeto de um sistema de irrigação por aspersão convencional V.27 5.14 – Desempenho de um sistema de irrigação por aspersão convencional V.38

Capítulo VI – Irrigação Localizada VI.1 6.1 – Introdução VI.1 6.2 – Vantagens do sistema VI.2 6.3 – Limitações do sistema VI.2 6.4 – Componentes do sistema VI.2 6.5 – Descrição dos componentes do sistema VI.3 6.5.1 – Moto-bomba VI.3 6.5.2 – Cabeçal de controle VI.3 6.5.3 – Linha principal VI.3 6.5.4 – Linha de derivação VI.3 6.5.5 – Linha lateral VI.3 6.5.6 – Emissores VI.3 6.6 – Dimensionamento do sistema – gotejamento VI.4 6.6.1 – Quantidade de água necessária VI.4 6.6.2 – Evapotranspiração VI.4

6.6.3 – Irrigação real necessária VI.7 6.6.4 – Irrigação total necessária VI.7 6.6.5 – Tempo de irrigação por posição VI.7 6.6.6 – Número de unidades operacionais VI.7 6.6.7 – Vazão necessária ao sistema VI.8 6.6.8 – Dimensionamento hidráulico do sistema VI.8 6.6.8.1 – Linhas laterais VI.8 6.6.8.2 – Linhas de derivação VI.9 6.6.8.3 – Linha principal VI.9 6.6.9 – Altura manométrica total VI.9 6.6.10 – Potência do conjunto moto-bomba VI.9 6.6.1 – Projeto de um sistema VI.10

Capítulo VII – Irrigação por Pivô Central VII.1 7.1 – Introdução VII.1 7.2 – Tipos de pivôs VII.2 7.3 – Variação da vazão ao longo do pivô VII.2 7.4 – Intensidade de precipitação VII.4 7.5 – Lâmina aplicada por volta do pivô central VII.5 7.6 – Intensidade de precipitação média em cada ponto VII.5 7.7 – Precipitação máxima em cada ponto VII.6 7.8 – Velocidade de deslocamento da última torre VII.8 7.9 – Tempo mínimo de rotação VII.8 7.10 – Vazão necessária ao sistema VII.8 7.1 – Uniformidade de aplicação com pivô central VII.8 7.12 – Eficiência de aplicação com pivô central VII.9 7.13 – Limitações para uso do pivô central VII.9 7.13.1 – Solos VII.9 7.13.2 – Declividade do terreno VII.9 7.13.3 – Culturas VII.9

Capítulo VIII – Irrigação por Autopropelido VIII.1 8.1 – Introdução VIII.1 8.2 – Escolha do autopropelido e do aspersor canhão VIII.2 8.3 – Largura da faixa molhada pelo autopropelido VIII.2 8.4 – Comprimento da faixa molhada pelo autopropelido VIII.2 8.5 – Comprimento do percurso do autopropelido VIII.2 8.6 – Tempo de irrigação por faixa VIII.2 8.7 – Lâmina bruta de irrigação aplicada VIII.3 8.8 – Intensidade de aplicação média VIII.3 8.9 – Tempo total de irrigação por faixa VIII.4 8.10 – Número de faixas irrigadas por dia VIII.4 8.1 – Número de faixas irrigadas por autopropelido VIII.5 8.12 – Área irrigada por autopropelido VIII.5 8.13 – Dimensionamento hidráulico do autopropelido VIII.5

Capítulo IX – Irrigação por Sulcos de Infitração IX.1 9.1 – Introdução IX.1 9.2 – O método de irrigação por sulcos de infiltração IX.2 9.2.1 – Características de um sistema de irrigação por sulcos IX.3 9.2.1.1 – Forma e tamanho do sulco IX.3 9.2.1.2 – Infiltração IX.3 9.2.1.3 – Espaçamento entre sulcos IX.4 9.2.1.4 – Declividade e vazão IX.5 9.2.1.5 – Comprimento dos sulcos IX.6

9.2.2 –.Procedimento para determinação das curvas de avanço IX.6 9.2.3 –.Considerações sobre o tempo de avanço relacionado com o tempo de oportunidade IX.8

9.2.4 – Abastecimento de água aos sulcos IX.9 9.2.5 – Manejo de água aos sulcos IX.10 9.2.6 – Projeto de um sistema de irrigação por sulcos de infiltração IX.10

Capítulo IX – Irrigação por Inundação X.1 10.1 – Introdução X.1 10.2 – Tipo de solo X.1 10.3 – Declividade do terreno X.2 10.4 – Dimensões dos tabuleiros X.3 10.5 – Forma dos diques ou taipas X.3 10.6 – Manejo de água nos tabuleiros X.3 10.7 – Determinação das vazões mobilizadas aos tabuleiros X.4 10.7.1 – Determinação da vazão máxima para encher o tabuleiro X.4 10.7.2 – Determinação da vazão necessária para manter a lâmina constante X.5

IRRIGAÇÃO CAP.I - 1

1.1 – CONSIDERAÇÕES INICIAIS

A técnica da irrigação pode ser definida como sendo a aplicação artificial de água ao solo, em quantidades adequadas, visando proporcionar a umidade adequada ao desenvolvimento normal das plantas nele cultivadas, a fim de suprir a falta ou a má distribuição das chuvas.

Dessa forma, o objetivo que se pretende com a irrigação é satisfazer as necessidades hídricas das culturas, aplicando a água uniformemente e de forma eficiente, ou seja, que a maior quantidade de água aplicada seja armazenada na zona radicular à disposição da cultura. Este objetivo deve ser alcançado sem alterar a fertilidade do solo e com mínima interferência sobre os demais fatores necessários à produção cultural.

Os fatores necessários para prover as culturas de água necessária para máxima produtividade, são principalmente: energia, água, mão-de-obra e as estruturas de transporte da água, devendo existir uma completa inter-relação entre eles de tal forma que se um deles não se encontrar bem ajustado, o conjunto ficará comprometido, prejudicando o objetivo a ser alcançado que é a máxima produtividade.

1.2 - HISTÓRICO E DESENVOLVIMENTO

Na literatura, nota-se que a irrigação foi uma das primeiras modificações no ambiente realizadas pelo homem primitivo. As primeiras tentativas de irrigação foram

IRRIGAÇÃO CAP.I - 2 bastante rudimentares, mas a importância do manejo da água tornou-se evidente na agricultura moderna. Tribos nômades puderam estabelecer-se em determinadas regiões, irrigando terras férteis e, assim, assegurando produtividade suficiente para a sua subsistência.

Dados históricos das sociedades antigas mostram a sua dependência da agricultura irrigada, onde grandes civilizações desenvolveram-se nas proximidades de grandes rios como o rio Nilo, no Egito, por volta de 6000 A.C, rio Tigre e Eufrates, na Mesopotâmia, por volta de 4000 a.C., e Rio Amarelo, na China, por volta de 3000 a.C. Na Índia, há indícios da prática da irrigação em 2500 a.C. Nas civilizações antigas, a irrigação era praticada fazendo-se represamentos de água cercados por diques. Com o avanço da tecnologia e divulgação das mesmas, a irrigação espalhou-se por várias partes do mundo.

Todos os anos, as águas do Nilo, engrossadas pelas chuvas que caem em setembro/outubro nas cabeceiras, cobriam as margens e se espalhavam pelo Egito. Quando baixavam, deixavam uma camada de húmus extremamente fértil, onde os camponeses plantavam trigo e seus animais pastejavam. Havia, entretanto, um grave inconveniente: se a cheia era muito alta, causava devastação; se fosse fraca, restavam menos terras férteis para semear e os alimentos escasseavam - eram os anos de vacas magras. Tornava-se vital controlar essas cheias. Sob o comando do faraó Ramsés I, os egípcios construíram diques que prensaram o rio em um vale estreito, elevando suas águas e represando-as em grandes reservatórios, de onde desciam aos campos através de canais e comportas, na quantidade desejada. O homem começava a dominar a ciência da irrigação e se dava conta de sua importância para o progresso. Experiências semelhantes ocorriam em outras partes do mundo de então. A maioria das grandes civilizações surgia e se desenvolvia nas bacias dos grandes rios.

Na Índia, os métodos de irrigação nos vales dos rios Indo e Ganges são conhecidos e praticados desde os tempos memoriais. Na China, sua imensa população sempre teve que realizar muitos esforços para cultivar arroz. Com muito engenho, o camponês chinês elevava a água, por processo manual, até os terraços que construíam nas escarpas das montanhas e, de lá, distribuíam-na cuidadosamente, quadra por quadra, com total aproveitamento do líquido e do solo.

A irrigação no México e América do Sul foi desenvolvida pelas civilizações

Maias e Incas há mais de 2000 anos. A técnica da irrigação continua a ser utilizada nessas terras, em algumas com sistemas de condução e distribuição de água bem antigos. No Irã,

IRRIGAÇÃO CAP.I - 3

Ganats, túneis com 3000 anos conduzem água das montanhas para as planícies. Barragens de terra construídas para irrigar arroz no Japão, bem como tanques de irrigação em Sri Lanka, datam 2000 anos e se encontram em pleno uso.

Nos EUA, a irrigação já era praticada pelos índios da região sudoeste a 100

A.C.. Exploradores espanhóis encontraram evidências de canais de irrigação e derivações ao longo de vários pontos dos rios. Os espanhóis também introduziram aos índios novos métodos de irrigação e novas culturas irrigadas, tais como frutíferas, vegetais, oliveira, trigo, e cevada. Como em outras áreas do mundo a irrigação permitiu que índios se estabelecessem e desfrutassem de fonte mais segura de alimentos.

Os pioneiros na região oeste dos EUA não foram diferentes do que os povos das civilizações antigas. Os agricultores desenvolveram técnicas de irrigação que eram empregadas através de cooperativas. O desenvolvimento da agricultura irrigada no oeste americano teve apoio do governo através dos atos: Desert Land Act em 1877 e do Carey Act em 1894. Nas regiões sudoeste da Califórnia e Utah, a irrigação não expandiu rapidamente até o ato Reclamation Act, em 1902. O desenvolvimento da irrigação deveu-se ao apoio do governo, fornecendo crédito, e técnicos especializados para a construção da infra-estrutura de distribuição e armazenamento de água para irrigação. Depois da Segunda Guerra Mundial, a agricultura irrigada expandiu rapidamente na região Central das Grandes Planícies e na região Sudoeste. Nos últimos anos, a expansão das áreas irrigadas tem diminuído bastante em função dos baixos preços em commodities, da alta dos custos de energia e da menor disponibilidade dos recursos hídricos.

O Japão, a Indonésia e outros países do Oriente adotaram sistemas parecidos. Aqui na América do Sul, os Maias, Incas e Astecas deixaram vestígios de suas obras de irrigação onde hoje se localizam o México, Peru, norte do Chile e Argentina. Na Espanha e na Itália ainda sobrevivem redes de canais e aquedutos dos tempos dos dominadores árabes e romanos.

Israel e Estados Unidos constituem exemplos a parte. Sem a irrigação, a agricultura seria impossível em Israel, com seu solo pedregoso, ausência severa de chuvas e um único rio perene, o Jordão. Aproveitando de forma extremamente racional o pequeno Jordão, construindo imenso aqueduto do lago Tiberíades até o deserto de Neguev, extraindo água dos mananciais subterrâneos e aplicando modernos processos científicos no uso econômico da água, a nação israelense consegue não só abastecer-se como exportar cereais, frutas e laticínios. Já os Estados Unidos dispensam comentários na condição de

(Parte 1 de 8)

Comentários