(Parte 1 de 2)

Inversor de Freqüência

Atualmente, a necessidade de aumento de produção e diminuição de custos, se fez

Descrição do Funcionamento. dentro deste cenário surgir a automação, ainda em fase inicial no Brasil, com isto uma grande infinidade de equipamentos foram desenvolvidos para as mais diversas variedades de aplicações e setores industriais, um dos equipamentos mais utilizados nestes processos conjuntamente com o CLP é o Inversor de Freqüência, um equipamento versátil e dinâmico,vamos expor agora o princípio básico do inversor de freqüência. Um inversor de frequência é um dispositivo capaz de gerar uma tensão e freqüência trifásicas ajustáveis, com a finalidade de controlar a velocidade de um motor de indução trifásico. A figura abaixo mostra resumidamente o diagrama em blocos de um inversor de freqüência escalar:

Seção Retificadora

Os seis diodos retificadores situados no circuito de entrada do inversor, retificam a tensão trifásica da rede de entrada (L1, L2 e L3). A tensão DC resultante é filtrada pelo capacitor C e utilizada como entrada para a Seção Inversora.

Seção Inversora Na seção inversora, a tensão retificada DC é novamente convertida em Trifásica AC. Os transistores chaveiam várias vezes por ciclo, gerando um trem de pulsos com largura variável senoidalmente (PWM). Esta saída de tensão pulsada, sendo aplicada em um motor (carga indutiva), irá gerar uma forma de onda de corrente bem próxima da senoidal através do enrolamento do motor.

Abaixo, a forma de onda na saída do inversor

Blocos do inversor

1º bloco - CPU A CPU (unidade central de processamento) de um inversor de freqüência pode ser formada por um micro processador ou por um micro controlador (PLC). Isso depende apenas do fabricante. De qualquer forma, é nesse bloco que todas as informações (parâmetros e dados do sistema) estão armazenadas, visto que também uma memória está integrada a esse conjunto. A CPU não apenas armazena os dados e parâmetros relativos ao equipamentos, como também executa a função mais vital para o funcionamento do inversor: Geração dos pulsos de disparo, através de uma lógica de controle coerente, para os IGBT’s.

2º Bloco - IHM O segundo bloco é o IHM (interface Homem máquina). É através desse dispositivo que podemos visualizar o que está ocorrendo no inversor (display), e parametrizá-lo de acordo com a aplicação (teclas).

3ºBloco - Interfaces A maioria dos inversores pode ser comandada através de dois tipos de sinais: Analógicos ou digitais. Normalmente, quando queremos controlar a velocidade de rotação de um motor AC no inversor, utilizamos uma tensão analógica de comando. Essa tensão se situa entre 0 á 10 Vcc. A velocidade de rotação (RPM) será proporcional ao seu valor, por exemplo: 1 Vcc = 1000 RPM, 2Vcc = 2000 RPM. Para inverter o sentido de rotação basta inverter a polaridade do sinal analógico (de 0 á 10 Vcc sentido horário, e –10 á 0 Vcc sentido anti-horário). Esse é sistema mais utilizados em maquinas-ferramenta automáticas, sendo que a tensão analógica de controle é proveniente do controle numérico computadorizado (CNC). Além da interface analógica, o inversor possui entradas digitais. Através de um parâmetro de programação, podemos selecionar qual entrada é válida (Analógica ou digital).

4º Bloco – Etapa de potência A etapa de potência é constituída por um circuito retificador, que alimenta ( através de um circuito intermediário chamado “barramento DC”), o circuito de saída inversor (módulo IGBT).

Conversão DC/AC

Através do chaveamento de transistores em um circuito trifásico, vamos fazer uma "prévia", em um circuito monofásico. Observem a figura abaixo, e notem que a estrutura de um inversor trifásico é praticamente igual ao nosso modelo monofásico. A primeira etapa é o módulo de retificação e filtragem, que gera uma tensão DC fixa (barramento DC) e que alimenta os transistores IGBT's.

Imaginem agora que o circuito de lógica de controle ligue os transistores 2 a 2 na seguinte ordem: • Primeiro tempo- transistores Tl e T4 ligados, e T3 e T2 desligados. Nesse caso, a corrente circula no sentido de A para B (figura abaixo):

• Segundo tempo- transistores T1 e T4 desligados, e T3 e T 2 ligados. Nesse caso, a corrente circula no sentido de B para A (figura abaixo).

Ao inverter-se o sentido de corrente, a tensão na carga (motor) passa a ser alternada, mesmo estando conectada a uma fonte DC. Caso aumentemos a frequência de chaveamento desses transístores, também aumentaremos a velocidade de rotação do motor, e vice-versa. Como os transístores operam como chaves (corte ou saturação), a forma de onda de tensão de saída do inversor de frequência é sempre quadrada. Na prática, os transístores chaveiam modulando largura de pulso (PWM), como visto na apostila passada, afim de se obter uma forma de onda de tensão mais próxima da senoidal. Raramente encontramos aplicações monofásicas nas indústrias. A maioria dos inversores são trifásicos, portanto, façamos outra analogia de funcionamento, tomando como base ainda o inversor trifásico da figura da apostila. A lógica de controle agora precisa distribuir os pulsos de disparos pelos 6 IGBT's, de modo a formar uma tensão de saída (embora quadrada) alternada e defasada de 120° uma da outra. Como temos 6 transistores, e devemos ligá-los 3 a 3, temos 8 combinações possíveis, porém apenas 6 serão válidas, conforme veremos a seguir. Na figura abaixo, representamos os IGBT's como chaves, pois em um inversor é assim que eles funcionam.

Curva V/F

Como vimos anteriormente, se variarmos a freqüência da tensão de saída no inversor, alteramos na mesma proporção, a velocidade de rotação do motor. Normalmente, a faixa de variação de freqüência dos inversores fica entre 0,5 e 400 Hz, dependendo da marca e modelo. (Obs: para trabalhar em freqüências muito altas, o motor deve ser “preparado”). A função do inversor de freqüência, entretanto, não é apenas controlar a velocidade de um motor AC. Ele precisa manter o torque (conjugado) constante para não provocar alterações na rotação quando o motor estiver com carga. Um exemplo clássico desse problema é em uma máquina operatriz. Imaginem um inversor controlando a velocidade de rotação de uma placa (parte da máquina onde a peça a ser usinada é fixada) de um torno. Quando introduzimos a ferramenta de corte, uma carga mecânica é imposta ao motor, que deve manter a rotação constante. Caso a rotação se altere, a peça pode apresentar um mau acabamento de usinagem. Para que esse torque realmente fique constante, por sua vez, o inversor deve manter a razão V/F (Tensão ÷ Frequência) constante. Isto é, caso haja mudança de frequência, ele deve mudar (na mesma proporção) a tensão, para que a razão se mantenha, como por exemplo: F = 50Hz V = 300V V/F = 6 • Situação 1: O inversor foi programado para enviar 50 Hz ao motor, e sua curva V/F está parametrizada em 6. Automaticamente, ele alimenta o motor com 300 V; F = 60Hz V = 360V V/F = 6 • Situação 2: O inversor recebeu uma nova instrução para mudar de 50 Hz para 60 Hz. Agora a tensão passa a ser 360 V e a razão V/F mantém-se em 6. O valor de V/F pode ser programado (parametrizado) em um inversor, e seu valor dependerá da aplicação. Quando o inversor necessita de um grande torque, porém não atinge velocidade muito alta, atribuímos a ele o maior V/F que o equipamento puder fornecer, e desse modo ele terá um melhor rendimento em baixas velocidades, além de alto torque. Já no caso em que o inversor deva operar com altas rotações e com torques não tão altos, parametrizamos um V/F menor e encontraremos o melhor rendimento para Essa outra situação.

Mas, como o inversor pode mudar a tensão V se ela é fixada no barramento DC, através da retificação e filtragem da própria rede? O inversor altera a tensão V oriunda do barramento DC, através da modulação por largura de pulso (PWM). A unidade lógica, além de distribuir os pulsos aos IGBT's do modo já estudado, também controla o tempo em que cada IGBT permanece ligado (ciclo de trabalho). • Quando V tem que aumentar ,os pulsos são “alargados” (maior tempo em 0N)

• Quando V tem que diminuir, os pulsos são “estreitados”. Dessa forma, a tensão eficaz entregue ao motor pode ser controlada. A frequência de PWM também pode ser parametrizada, e geralmente encontra-se entre 2,5 kHz e 16 kHz. Na medida do possível, devemos deixa-la próxima do limite inferior pois assim Diminuímos as interferências eletromagnéticas geradas pelo sistema (EMI).

Inversor Vetorial

Podemos classificar os inversores em dois tipos: inversores escalares e vetoriais. Os escalares e vetoriais possuem a mesma estrutura de funcionamento, mas a diferença esta no modo em que o torque é controlado. Nos inversores escalares, como dissemos anteriormente, a curva V/F é fixada (parametrizada), tomando como base o tipo de regime de trabalho em que o inversor irá operar. Existe porém, uma condição problemática que é justamente o ponto crítico de qualquer sistema de acionamento AC: as baixas rotações. O sistema AC não consegue um bom torque com velocidades baixas, devido ao próprio rendimento do motor AC. Para compensar esse fenômeno, desenvolveu-se o inversor de freqüência vetorial. Muito mais caro e complexo que o escalar, ele não funciona com uma curva V/F pré- fixada (parametrizada). Na verdade ele varia tensão e frequência, de modo a otimizar o torque para qualquer condição de rotação (baixa ou alta). É como se ficássemos parametrizando a cada ms, uma nova curva V/F para cada nova situação. O inversor vetorial controla V/F através das correntes de magnetização e rotórica do motor. Normalmente um tacômetro, ou um encoder são utilizados como sensores de velocidade, formando uma "malha fechada" de controle de velocidade. Existem porém os inversores vetoriais “sensorless”, que não utilizam sensores de velocidade externos.

Feito essa pequeno estudo da estrutura funcional do inversor, vamos mostrar como instalálo. Existe uma grande quantidade de fabricantes, e uma infinidade de aplicações diferentes para os inversores. Os terminais identificados como: R, S, e T (ou Ll, L2, e L3), referem-se à entrada trifásica da rede elétrica. Para pequenas potências, é comum encontrarmos inversores com a entrada monofásicos (porém a saída continua sendo trifásica). Para diferenciar a entrada da rede para a saída do motor, a saída (normalmente) vem indicada por: U, V e W. Além da potência, temos os bornes de comando. Cada fabricante possui sua própria configuração, portanto, para saber "quem é quem" temos de consultar o manual de respectivo fabricante. De qualquer maneira, os principais bornes são as entradas (analógicas ou digitais), e as saídas (geralmente digitais).

Cuidados que devemos ter ao instalar um inversor

1. Cuidado! Não há inversor no mundo que resista à ligação invertida de entrada da rede elétrica (trifásica ou monofásica), com a saída trifásica para o motor. 2. O aterramento elétrico deve estar bem conectado, tanto ao inversor como ao motor. O valor do aterramento nunca deve ser maior que 5. (norma IEC536), e isso pode ser facilmente comprovado com um terrômetro, antes da instalação. 3. Caso o inversor possua uma interface de comunicação( RS 232, ou RS 485) para o PC, o tamanho do cabo deve ser o menor possível. 4. Devemos evitar ao máximo, misturar (em um mesmo eletroduto ou canaleta), cabos de potência (rede elétrica, ou saída para o motor) com cabos de comando (sinais analógicos, digitais, RS 232, etc...). 5. O inversor deve estar alojado próximo a “orifícios” de ventilação, ou, caso a potência seja muito alta, deve estar submetido a uma ventilação (ou exaustão). Alguns inversores já possuem um pequeno exaustor interno. 6. A rede elétrica deve ser confiável, isto é, jamais ultrapassar variações de +ou- 10% em sua amplitude. 7. Sempre que possível, utilizar os cabos de comando devidamente blindados. 8. Os equipamentos de controle (PLC, CNC, PC, etc...), que funcionarem em conjunto com o inversor, devem possuir o "terra" em comum. Normalmente, esse terminal vem indicado pela referência “PE” ( proteção elétrica), e sua cor é amarela e verde (ou apenas verde ). 9. Utilizar sempre parafusos e arruelas adequadas para garantir uma boa fixação ao painel. Isso evitará vibrações mecânicas. Além disso, muitos inversores utilizam o próprio painel em que são fixados como dissipador de calor. Uma fixação pobre, nesse caso, causará um aquecimento excessivo ( e possivelmente sua queima ). 10. Caso haja contatores e bobinas agregadas ao funcionamento do inversor, utilizar sempre supressores de ruídos elétricos (circuitos RC para bobinas AC, e diodos para bobinas DC). Essas precauções não visam apenas melhorar o funcionamento do inversor, mas evitar que ele interfira em outros equipamentos ao seu redor O inversor de frequência é, infelizmente, um grande gerador de EMI ( interferências eletromagnéticas), e, caso não o instalarmos de acordo com as orientações acima, poderemos prejudicar toda a máquina (ou sistema) ao seu redor. Basta dizer que, para um equipamento atender o mercado europeu, a certificação CE ( Comunidade Européia ) exige que a emissão eletromagnética chegue a niveis baixíssimos (norma IEC 22G - WG4 (CV) 21).

Para que o inversor funcione a contento, não basta instalá-lo corretamente. É preciso "informar" a ele em que condições de trabalho irá operar. Essa tarefa é justamente a parametrização do inversor. Quanto maior o número de recursos que o inversor oferece, tanto maior será o número de parâmetros disponíveis. Existem inversores com tal nível de sofisticação, que o número de parâmetros ultrapassa a marca dos 900! Obviamente, por enquanto, veremos apenas os principais, e para facilitar nosso estudo futuro, utilizaremos os endereços particularidades do inversor SIMOVERT

MICROMASTER do fabricante SIEMENS, porém um mesmo parâmetro, com certeza, muda de endereço de fabricante para fabricante. O inversor de frequência MICROMASTER tem as mesmas funções dos demais fabricantes (Yaskawa, ABB, WEG, Allen Bladley, etc...). Isso não deverá dificultar o trabalho com inversores de outras marcas e modelos, pois basta associarmos com os indicados pelo manual do fabricante especifico. Como faço para acessar os parâmetros e parametrizar um inversor? Normalmente devemos seguir os seguintes passos: 1° passo Acionamos a tecla P e as setas . ou . até acharmos o parâmetro desejado. 2° passo Agora aciona-se P novamente, e o valor mostrado no display será o valor do parâmetro, e não mais a ordem em que ele está. 3° passo Acionamos as teclas . ou . até acharmos o valor desejado ao parâmetro. 4° passo Basta acionar P novamente, e o novo parâmetro estará programado. Observação: Cerca de 90% dos inversores comerciais funcionam com essa lógica. E quais são os principais parâmetros de um inversor? Parâmetro P009: Liberação de alteração de parâmetros • Ajuste = 0 : somente os parâmetros P001 a P009 podem ser alterados.

• Ajuste = 1 : os parâmetros P001 a P009 podem ser alterados e todos os demais podem ser somente lidos. • Ajuste = 2 : todos os parâmetros podem ser alterados porém P009 retorna automaticamente a 0 na próxima vez que o inversor for desenergizado. • Ajuste = 3 : todos os parâmetros podem ser alterados indefinidamente. Esse parâmetro é uma proteção contra "curiosos". Para impedir que alguém, inadvertidamente, altere algum parâmetro da máquina, utiliza-se um ajuste específico como proteção. Parâmetro P084: Tensão nominal do motor. Esse parâmetro existe na maioria dos inversores comerciais, 1embrando que não necessariamente como P084, e serve para informarmos ao inversor qual é a tensão nominal em que o motor irá operar. Suponha que o motor tenha tensão nominal 220VCA. Parâmetro P083: Corrente nominal do motor. Esse parâmetro determina o valor de corrente que será utilizado nos cálculos que serão feitos pelo inversor, como por exemplo para protegê-lo de sobrecargas. Parâmetro P003: Frequência mínima de saída. Esse parâmetro determina a velocidade mínima do motor. Pode variar de 0,0Hz a 650Hz, porém deve ser sempre menor que a frequência máxima. Parâmetro P013: Frequência máxima de saída . Esse parâmetro determina a velocidade máxima do motor. Pode variar de 0,0Hz a 650Hz, porém deve ser sempre maior que a frequência mínima. Parâmetro P031: Frequência de JOG. JOG (impulso) é um recurso que faz o motor girar com velocidade bem baixa. Isso facilita o posicionamento de peças antes da máquina funcionar em seu regime normal. Por exemplo: Encaixar o papel em uma bobinadeira, antes do papel ser bobinado efetivamente.

(Parte 1 de 2)

Comentários