TIRISTORES e RETIFICADORES CONTROLADOS

TIRISTORES e RETIFICADORES CONTROLADOS

(Parte 1 de 6)

E 833 Eletrônica de Potência Módulo 2 FEC - UNICAMP

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - UNICAMP E-833 ELETRÔNICA DE POTÊNCIA

MÓDULO 2

TIRISTORES e RETIFICADORES CONTROLADOS

ASPECTOS TEÓRICOS 2.1 O Tiristor

O nome tiristor engloba uma família de dispositivos semicondutores que operam em regime chaveado, tendo em comum uma estrutura de 4 camadas semicondutoras numa seqüência p-n-p-n, apresentando um funcionamento biestável.

O tiristor de uso mais difundido é o SCR (Retificador Controlado de Silício), usualmente chamado simplesmente de tiristor. Outros componentes, no entanto, possuem basicamente a mesma estrutura: LASCR (SCR ativado por luz), TRIAC (tiristor triodo bidirecional), DIAC (tiristor diodo bidirecional), GTO (tiristor comutável pela porta), MCT (Tiristor controlado por MOS).

2.1.1 Princípio de funcionamento

O tiristor é formado por quatro camadas semicondutoras, alternadamente p-n-p-n, possuindo 3 terminais: anodo e catodo, pelos quais flui a corrente, e a porta (ou gate) que, a uma injeção de corrente, faz com que se estabeleça a corrente anódica. A figura 2.1 ilustra uma estrutura simplificada do dispositivo.

Se entre anodo e catodo tivermos uma tensão positiva, as junções J1 e J3 estarão diretamente polarizadas, enquanto a junção J2 estará reversamente polarizada. Não haverá condução de corrente até que a tensão Vak se eleve a um valor que provoque a ruptura da barreira de potencial em J2 [2.1].

A Anodo

Gate G

Catodo

Vcc Rc (carga)

Rg Vg CH

Rg Vg

RcVcc P+ N- P N+

J1 J2 J3

Figura 2.1 Funcionamento básico do tiristor

Se houver uma tensão Vgk positiva, circulará uma corrente através de J3, com portadores negativos indo do catodo para a porta. Por construção, a camada P ligada à porta é suficientemente estreita para que parte dos elétrons que cruza J3 possua energia cinética suficiente para vencer a barreira de potencial existente em J2, sendo então atraídos pelo anodo.

E 833 Eletrônica de Potência Módulo 2 FEC - UNICAMP

Desta forma, a junção reversamente polarizada tem sua diferença de potencial diminuída e estabelece-se uma corrente entre anodo e catodo, que poderá persistir mesmo na ausência da corrente de porta.

Quando a tensão Vak for negativa, J1 e J3 estarão reversamente polarizadas, enquanto J2 estará diretamente polarizada. Assim, o tiristor bloqueará o fluxo de portadores enquanto não for superada a tensão de ruptura das duas junções.

É comum fazer-se uma analogia entre o funcionamento do tiristor e o de uma associação de dois transistores, conforme mostrado na figura 2.2.

Ik T2

T1 Ib1

Ic2

Ig Ib2 Ic1

Figura 2.2 Analogia entre tiristor e transistores

Quando uma corrente Ig positiva é aplicada, Ic2 e Ik crescerão. Como Ic2 = Ib1, T1 conduzirá e teremos Ib2=Ic1 + Ig, que aumentará Ic2 e assim o dispositivo evoluirá até a saturação, mesmo que Ig seja retirada. Tal efeito cumulativo ocorre se os ganhos dos transistores forem maior que 1. O componente se manterá em condução desde que, após o processo dinâmico de entrada em condução, a corrente de anodo tenha atingido um valor superior ao limite IL, chamado de corrente de "latching". Para que o tiristor deixe de conduzir é necessário que a corrente por ele caia abaixo do valor mínimo de manutenção (IH), permitindo que se restabeleça a barreira de potencial em J2. Para a comutação do dispositivo não basta, pois, a aplicação de uma tensão negativa entre anodo e catodo. Tal tensão reversa apressa o processo de desligamento por deslocar nos sentidos adequados os portadores na estrutura cristalina, mas não garante, sozinha, o desligamento.

Devido a características construtivas do dispositivo, a aplicação de uma polarização reversa do terminal de gate não permite a comutação do SCR. Este será um comportamento dos GTOs, como se verá adiante.

Vak

Ia Von

H Vbo

Ig2> Ig1 > Ig=0

Vbr Figura 2.3 Característica estática do tiristor.

E 833 Eletrônica de Potência Módulo 2 FEC - UNICAMP

2.1.2 Maneiras de disparar um tiristor

Podemos considerar cinco maneiras distintas de fazer com que um tiristor entre em condução:

a) Tensão

Quando polarizado diretamente, no estado desligado, a tensão de polarização é aplicada sobre a junção J2. O aumento da tensão Vak leva a uma expansão da região de transição tanto para o interior da camada do gate quanto para a camada N adjacente. Mesmo na ausência de corrente de gate, por efeito térmico, sempre existirão cargas livres que penetram na região de transição (no caso, elétrons), as quais são aceleradas pelo campo elétrico presente em J2. Para valores elevados de tensão (e, consequentemente, de campo elétrico), é possível iniciar um processo de avalanche, no qual as cargas aceleradas, ao chocarem-se com átomos vizinhos, provoquem a expulsão de novos portadores, os quais reproduzem o processo. Tal fenômeno, do ponto de vista do comportamento do fluxo de cargas pela junção J2, tem efeito similar ao de uma injeção de corrente pelo gate, de modo que, se ao se iniciar a passagem de corrente for atingido o limiar de IL, o dispositivo se manterá em condução.

b) Taxa de crescimento da tensão direta

Quando reversamente polarizadas, a área de transição de uma junção comporta-se de maneira similar a um capacitor, devido ao campo criado pela carga espacial. Considerando que praticamente toda a tensão está aplicada sobre a junção J2 (quando o SCR estiver desligado e polarizado diretamente), a corrente que atravessa tal junção é dada por:

()I dC V dt C dVdt

V dC

jakjakakj=⋅=⋅+⋅(2.1)

dtj

Onde Cj é a capacitância da junção.

Quando Vak cresce, a capacitância diminui, uma vez que a região de transição aumenta de largura. Entretanto, se a taxa de variação da tensão for suficientemente elevada, a corrente que atravessará a junção pode ser suficiente para levar o tiristor à condução.

Uma vez que a capacitância cresce com o aumento da área do semicondutor, os componentes para correntes mais elevadas tender a ter um limite de dv/dt menor. Observe-se que a limitação diz respeito apenas ao crescimento da tensão direta (Vak > 0). A taxa de crescimento da tensão reversa não é importante, uma vez que as correntes que circulam pelas junções J1 e J3, em tal situação, não têm a capacidade de levar o tiristor a um estado de condução.

Como se verá adiante, utilizam-se circuitos RC em paralelo com os tiristores com o objetivo de limitar a velocidade de crescimento da tensão direta sobre eles.

c) Temperatura

(Parte 1 de 6)

Comentários