Manual para Conversão de Unidades

Manual para Conversão de Unidades

(Parte 1 de 3)

SISTEMAS DE UNIDADES

Wilson Miguel Salvagnini

Escola Politécnica da Universidade de São Paulo

jackwill@uol.com.br

Na Engenharia pode-se parafrasear o grande filósofo Chacrinha: - “quem não mede, para se estrumbicar pede” – Estamos sempre medindo algo, comprimento, temperatura, pressão etc. Mas o que é medir? Medir nada mais é do que fazer uma comparação. Quando meço o comprimento de um duto, por exemplo, 5 metros, na verdade estou comparando o comprimento daquele duto com um padrão de comprimento chamado Metro, então o meu duto é 5 vezes maior do que o comprimento de algo chamado metro.

Já que medir é comparar, quando quisermos medir algo podemos comparar com qualquer coisa. Assim, posso dizer que eu tenho uma altura de 9 palmos (de minha mão direita), mais 2 caixas de fósforos, (de comprido), e 5 larguras de palitos de fósforos, da mesma caixa. Outro exemplo: O rei George III da Inglaterra decidiu que o galão, medida de volume padrão para comparação, deveria ser igual ao volume do seu urinol. Vem daí o “galão imperial”. Ele enviou o urinol de sua esposa para as colônias para servir de padrão. E vem daí o “galão americano”. Isto é uma loucura! Cada um escolhe o que quiser para servir de comparação! É preciso racionalizar os padrões para comparação.

Comprimento

Uma das primeiras tentativas feitas para estabelecer um sistema mais racional de medidas e que deveria ser universal, surgiu em meados do século XVII, quando o padre Gabriel Mouton, vigário da Igreja de São Paulo, de Lyon, França, sugeriu a adoção como unidade de comprimento o arco de um meridiano terrestre compreendido pelo ângulo de 1’ (um minuto) cujo vértice se situa no centro da terra. Este comprimento seria de aproximadamente 1851,8 m. As suas subdivisões deveriam ser em escala decimal. A sugestão de Mouton não foi adotada na época. Outra proposta semelhante foi consagrada 150 anos mais tarde, quando, em 1790, em plena Revolução Francesa, a Academia de Ciências de Paris, composta pelos maiores cientistas da época, foi encarregada de estabelecer um sistema de medidas unificado. Nasceu assim o sistema que deveria ser adotado por todos.

A unidade de medida de comprimento, disseram os cientistas da a Academia de Ciências de Paris – não precisa ter como referência medidas humanas como as unidades precedentes (braço, pé, passo etc.). Deve, ao contrário, referir – se a algum comprimento fixo e invariável da natureza. O que teríamos melhor do que o planeta em que vivemos?

É certo de que a Terra é um pouco grande para que a sua medida sirva como unidade, porém pode-se tomar um comprimento característico do globo por exemplo a distância entre o polo e o equador e dividi lo por um número suficientemente grande para se obter o comprimento fixo, a unidade de medida procurada. Por este caminho se chegou ao metro, definido, a princípio, como a décima milionésima parte da distância do polo norte ao equador no meridiano que passa por Paris.

Por volta de 1800 o metro passou a ser definido como o comprimento entre dois traços gravados nas extremidades de uma barra de platina depositada no instituto Internacional de Pesos e Medidas em Paris, França. Em 1870 uma nova barra, agora de Platina com Irídio, Platina Iridiada, para evitar desgaste com o tempo. Atualmente, a definição do metro data de 1960, baseada no comprimento de onda luminosa emitida por uma fonte considerada padrão, o Criptônio 86.

O sistema métrico trouxe algo de muito bom com relação aos múltiplos e submúltiplos: uma escala decimal de grandezas . Raciocinar de 10 em 10 é muito mais fácil para o ser humano, que na pior das hipóteses pode usar os dedos da mão para ajudar a raciocinar.:

Milímetro (mm).........0,001 m

Centímetro (cm)............0,01 m

Decímetro (dm).............0,1 m

Metro ( m )...............1 m

Decâmetro (dam).............10 m

Hectômetro ( hm )...........100 m

Quilômetro ( km )........1000 m

Repare como o sistema métrico decimal é mais racional que o sistema anglo-saxão (inglês) de medidas de comprimento:

1 polegada (25,4 cm) deve ser igual ao comprimento de três grãos de cevada alinhados.

1 jarda (0,914 m) deve representar a distância entre a ponta do nariz e o polegar, com o braço estendido, do rei Henrique I, Século XII;

1 pé igual a 12 polegadas (0,305 m).

Sistema que os Ingleses tentaram impor ao mundo e quase conseguiram.

Massa

Se medir é comparar então, quando medimos a massa de um determinado objeto utilizando uma balança de dois pratos, como mostrado na figura 1, fica evidente que medir é comparar; comparar o peso do objeto com o peso de um corpo tomado como padrão. Mas, por acaso não estamos querendo medir a massa de um objeto? Como estamos comparando pesos? Na verdade, neste tipo de balança comparamos pesos: peso do objeto = peso padrão. Como o peso é igual ao produto da massa pela aceleração da gravidade no local (g), podemos escrever:

FIG. 1- Balança de pratos

massa do peso padrão . g = massa do objeto . g

cortando g

massa do peso padrão = massa do objeto

Assim comparamos as duas massas. A vantagem deste tipo de balança está no fato de que a medida é a mesma em qualquer ponto da Terra, no litoral ou no topo do Evereste, onde a aceleração da gravidade da Terra é menor. Por outro lado, as balanças que medem diretamente o peso, por meio de a distensão de uma mola, ou outro dispositivo eletrônico, não apresentam a mesma medida em pontos diferentes da Terra. O pessoal que vive nos Andes recebe muito mais peixe dos que aqueles que vivem em Santos quando compram 1kg de peixe, desde que a balança tenha sido calibrada em Santos.

FIG.2 – Balança de mola

As balanças analíticas de laboratório, apesar de parecerem eletrônicas, comparam o peso de um dado objeto com pesos padrões que estão embutidos dentro da balança.

Mas qual é a massa ou o peso padrão com o qual podemos fazer comparações? Podemos eleger qualquer coisa como um padrão de peso, por exemplo: 700 grãos de trigo que por ordem do rei Henrique VIII no século XVI, na Inglaterra, seria o peso padrão ou a libra. Mas era uma unidade muito grande para ser utilizada na pesagem de ouro ou prata, por isso ele dividiu a libra em 16 partes dando o nome de onça! Ainda hoje a onça é utilizada para o ouro. Definitivamente os reis da Inglaterra não gostavam de raciocinar em escala decimal.

Os franceses, na mesma época que definiram o metro, 1790, teriam elegido como o padrão de massa o grama como a massa de 1 cm cúbico de água destilada à 4ºC. Apenas para construção de padrão representativo da unidade ter-se-ia adotado por convenção a massa de 1000 g; o quilograma. Estabeleceram também que os submúltiplos deste padrão de massa deveria obedecer a uma escala decimal, assim:

grama (g) decagrama (dag) hectograma (hg) quilograma (kg)

0,001 kg 0,01 kg 0,1 kg 1 kg

Isto é bem melhor do que utilizar a libra, a onça ou qualquer outra fera.

Tempo

Na idade média usava-se a ampulheta como medida de tempo, obviamente cada uma tinha a sua própria medida, seguramente a contagem do tempo era bem caótica. O mesmo raciocínio foi feito para a medida padrão de tempo, começou-se dividindo o dia em 24 partes iguais, a hora. Verificou-se que a hora era uma medida muito grande para boa parte dos eventos corriqueiros por isso, dividiu-se a hora em uma outra unidade de tempo 60 vezes menor, chamada de mínima, o nosso minuto. Novamente, foi necessário se estabelecer uma “segunda” e menor unidade de tempo dividiu-se o minuto em sessenta partes à qual se deu o nome de segundo, devido justamente ser uma segunda subdivisão de tempo. Foi este segundo escolhido como unidade padrão de tempo e definido como sendo a fração 1/86400 do dia solar médio. Mas como a duração do dia tem variação ao longo dos anos (o dia tem aumentado a sua duração de 0,5 s por ano!) em 1967 se estabeleceu uma definição mais rigorosa para o segundo: “ É a duração de 9 192 631 770 períodos da radiação correspondente à transição de um elétron entre os dois níveis do estado fundamental do átomo de Césio 133”. Os relógios atômicos podem medir o tempo com muita precisão fornecendo o padrão de comparação de tempo segundo muito confiavel.

Sistema Métrico Decimal

Reunindo-se os padrões de comparação para medidas de comprimento, metro; massa, quilograma; tempo, segundo e mais uma unidade de volume, o litro, igual a 1000 cm3, e utilizando múltiplos e submúltiplos desses padrões em escala decimal tem se o chamado Sistema Métrico Decimal. Note que o sistema métrico decimal tem de permeio uma unidade de volume, o litro, que poderia muito bem ser substituído por cm3 ou m3. Mas o sistema métrico decimal não é um sistema próprio da engenharia ou ciência mas algo voltado mais para as transações comerciais e hoje em dia ele é utilizado quase que universalmente, apesar da resistência de Ingleses e Americanos.

Grandezas Fundamentais e Derivadas

A existência do litro chama a atenção para o fato de que poder-se-ia racionalizar mais os sistema de medidas que seria mais apropriado para a engenharia e para a ciência. A todo rigor não seria necessário definir o litro como uma unidade padrão porque ele pode ser colocado como uma unidade derivada do metro (=0,001 m3). Se o metro é tomado como uma unidade fundamental, a unidade de área (m2) é uma unidade derivada assim como a de volume (m3). Se o metro e o segundo são tomados como unidades fundamentais, a velocidade (m/s) e a aceleração (m/s2) são derivadas. A idéia é estabelecer o menor número de unidades, ditas fundamentais, a partir das quais qualquer outra unidade pode ser obtida através de relações algébricas. A escolha é arbitrária, mas o bom senso estabeleceu algumas como fundamentais. Para a mecânica, qualquer grandeza pode ter a sua unidade dada pela combinação da unidade de comprimento, massa e tempo. Então escolhendo o metro, o quilograma e o segundo tem-se:

Velocidade (m/s), aceleração (m/s2), força (kg.m/s2), energia (kg.m2/s2), quantidade de movimento (kg.m/s), pressão (kg/(s2.m)), etc. Este sistema foi consagrado na mecânica e recebe o nome de “SISTEMA MKS” (metro, quilograma, segundo). Neste sistema algumas unidades derivadas recebem nomes especiais: Para a força Newton, para a pressão, Pascal. Para a energia o Joule.

Entretanto a coisa não é tão simples assim. Foi muito usado e ainda se encontra, principalmente na engenharia, unidades de um sistema no qual em vez da massa ser uma grandeza fundamental, a força é escolhida como fundamental. Este sistema é o MKS técnico ou MKS*. Neste sistema a grandeza fundamental é o quilograma – força. Então no MKS* tem-se metro, quilograma – força, segundo

Para entender o quilograma - grama força imagine que um corpo sofra a ação de uma força igual a 1 kgf e adquira a aceleração de 1 m/s2, então, a sua massa é igual a 1 unidade neste sistema:

1 kgf = 1 (unidade de massa) x 1 m/s2

Assim a unidade de massa deste sistema foi batizada como Unidade Técnica de Massa o famoso utm que perdeu muito espaço para o kg (e hoje quase esquecido).

Compare com o MKS, neste sistema a força é uma unidade derivada então o Newton é definido como a força que atua em uma massa de 1kg quando este adquire uma aceleração de 1m/s2

1(unidade de força) = 1kg X 1m/s2

Esta unidade de força é o Newton.

O esquema da FIG. 3 pode ajudar a entender o Newton e o utm:

FIG. 3 utm e kg

A massa de 1kg no MKS pesa 9,8N mas no MKS* pesa 1kgf porque:

No MKS: o peso de 1kg = 1kg X9,8m/s2 = 9,8N

No MKS*: o peso de 1kgf = mX9,8 m/s2 m = 1/9,8utm.

O fato de 1kg no MKS pesar 1kgf no MKS* foi e ainda é uma grande fonte de confusão! É muito comum se falar que uma dada massa pesa 1kg, é óbvio que se está omitindo o f do kgf. Cuidado, é muito fácil misturar sistemas de unidades diferentes com o kg e o kgf.

Nos sistemas de unidades inglesas acontece a mesma coisa ou pior. Também existe um sistema inercial onde as unidades fundamentais são: comprimento, massa e tempo.

Comprimento: pé cuja abreviatura é ft (do Inglês feet)

Massa: libra massa cuja abreviatura é lbm (em Inglês abrevia-se lb mas chama-se pound)

Tempo: é o nosso conhecido segundo (s).

O problema é que existem 3 tipos de libra:

“pound avoirdupois” para grandezas comerciais equivalente a 0,435kg e divida em 16 onças (oz).

“pound troy” para metais preciosos equivalente a 0,373kg subdividida em 12 onças.

“pound apothecaries” (libra apotecária) para pesagem de drogas e produtos farmacêuticos também equivalente a 0,373kg.

(Parte 1 de 3)

Comentários