APOSTILA - Teoria do Caos

APOSTILA - Teoria do Caos

(Parte 1 de 2)

Teoria do caos http://pt.wikipedia.org/wiki/Teoria_do_caos Origem: Wikipédia, a enciclopédia livre.

Mandelbrot 1-lambda. Os Fractais são representantes matemáticos do padrão e constância que podem ser detectados teoricamente pela Teoria do Caos

A Teoria do Caos para a física e a matemática é a hipótese que explica o funcionamento de sistemas complexos e dinâmicos. Isso significa que para um determinado resultado será necessária a ação e a interação de inúmeros elementos de forma aleatória. Para entender o que isso significa, basta pegar um exemplo na natureza, onde esses sistemas são comuns. A formação de uma nuvem no céu, por exemplo, pode ser desencadeada e se desenvolver com base em centenas de fatores que podem ser o calor, o frio, a evaporaçãoda água, os ventos, o clima, condições do Sol, os eventos sobre a superfície e inúmeros outros.

Para a maioria de nós, a soma de uma quantidade indeterminada de elementos, com possibilidades infinitas de variação e de interação, resultaria em nada mais do que um acontecimento ao acaso.

Pois, é exatamente isso que os matemáticos querem prever: o acaso.

Alguns pesquisadores já conseguiram chegar a algumas equações capazes de prever o resultado de sistemas como esses, ainda assim, a maior parte desses cálculos prevê um mínimo de constância dentro do sistema, o que normalmente não ocorre na natureza.

Os cálculos envolvendo a Teoria do Caos são utilizados para descrever e entender fenômenos meteorológicos, crescimento de populações, variações no mercado financeiro e movimentos de placas tectônicas, entre outros. Uma das mais conhecidas bases da teoria é o chamado "efeito borboleta", teorizado pelo matemático Edward Lorenz, em 1963.

Índice [esconder]

Ideia inicial

A idéia é que uma pequena variação nas condições em determinado ponto de um sistema dinâmico pode ter consequências de proporções inimagináveis. No caso das borboletas, o bater de asas de uma delas num determinado lugar do mundo poderia gerar uma movimentação de ar que, intensificada, desencadearia a alteração do comportamento da atmosfera da Terra em localidades distantes.

O método científico

Navalha de Occam, onde "...as melhores teorias são as mais simples"ou
"...pluralidades não devem ser postas sem necessidade...", ou ainda "(sic)pluralitas
non est ponenda sine neccesitate...",a natureza é econômica, isto é, sempre quando

A partir de William de Ockham (Guilherme de Occam), em sua teoria conhecida por houver dois caminhos que levam à verdade, vale o mais simples..., a ciência passou a utilizar um método lógico e simples para chegar às consideradas então verdades científicas, o que futuramente teria que ser revisto.

Galileu, Newton e Laplace

Galileu Galilei introduziu algumas das bases da metodologia científica presas à simplicidade da obtenção de resultados. Segundo aquela metodologia, a ciência continuou gradualmente a sua expansão em direção à determinação das realidades físicas.

Com Isaac Newton, surgiram as leis que regem a Mecânica determinista Clássica e a determinação de que a posição espacial de duas massasgravitacionais poderia ser prevista. Havendo portanto uma explicação plausível da órbita terrestre em relação ao Sol.

Portanto, o comportamento de três corpos gravitacionais poderia ser perfeitamente previsível, apesar do trabalho aumentado em função de mais dados inseridos para a execução dos cálculos necessários à determinação de posição.

Porém, ao se acrescentar mais corpos massivos para as determinações de posições, começaram a ocorrer certos desvios imprevisíveis. Newton traduziu estes desvios ou efeitos através de equações diferenciais que mostravam que o sistema em sua evolução tendia para a formação de um sistema de equações diferenciais não lineares.

Diferenciais lineares e não lineares

Existem duas formas ou tipos de equações diferenciais: As equações diferenciais lineares cuja resolução é explícita:

As equações diferenciais não lineares, cujas resoluções em muitos casos são impossíveis (existem exceções, é claro).

Exemplo de equação diferencial não linear:

Gravitação

Ao se encontrar no estudo do sistema gravitacional equações diferenciais não lineares, estas se tornavam impossíveis de resolução.

Laplace afirmou que “...(sic) uma inteligência conhecendo todas as variáveis universais em determinado momento, poderia compor numa só fórmula matemática a unificação de todos os movimentos do Universo.

Conseqüentemente deixariam de existir para esta inteligência o passado e o futuro, pois aos seus olhos todos os eventos seriam resultantes do momento presente.”

Perseguindo a harmonia da física de então, na busca de uma resposta para a unificação da natureza, Laplace formulou e desenvolveu os princípios da teoria das probabilidades, trabalhou nas equações diferenciais, criou a transformada de Laplace e a equação de Laplace.

Henri Poincaré

Henri Poincaré em 1880 aproximadamente, pesquisou os problemas relacionados à impossibilidade de resolução das equações diferenciais não lineares, na busca das leis da uniformidade e da unificação dos sistemas físicos. Seu objetivo era descrever o que ocorreria matematicamente quando da introdução de uma massa gravitacional complementar num sistema duplo, isto é, passando a análise de dois para três corpos gravitacionais interagindo mutuamente. Verificou que numa análise mais ampla, não se atendo a detalhes quantitativos e fazendo comparações qualitativas, isto é, enxergando o sistema como um todo. Acabou descobrindo que os sistemas de massas gravitacionais triplas evoluíam sempre para formas cujo equilíbrio era irregular. As órbitas mútuas tendiam a não ser periódicas, se tornavam complexas e irregulares.

Poincaré descobriu que ao invés de existirem órbitas ordenadas, equilibradas e regulares, ou um sistema equilibrado e harmônico, o que ocorriam eram sistemas verdadeiramente desestabilizados, onde o que prevaleceria não era a ordem natural, e sim o caos, a confusão, pois os movimentos se tornavam aleatórios.

Os resultados observados que levavam à confusão e à desarmonia, não condiziam com a harmonia que ocorria na mecânica clássica. Poincaré neste seu trabalho acabou por descobrir uma possibilidade da existência de um sistema desordenado, com variáveis ao acaso. Na época não houve um interesse prático na sua teoria de órbitas irregulares, sendo muitas vezes considerada a teoria uma aberração matemática. Continuaram havendo alguns estudos esparsos por outros matemáticos, porém como curiosidade sobre os Sistemas dinâmicos não-lineares.

Teoria do Caos

Um conjunto de objetos estudados que se inter-relacionem é chamado de sistema. Entre os sistemas consideram-se duas categorias: lineares e não-lineares, que divergem entre si na sua relação de causa e efeito. Na primeira a resposta a um distúrbio é diretamente proporcional à intensidade deste. Já na segunda a resposta não é necessariamente proporcional à intensidade do distúrbio, e é esta a categoria de sistemas que serve de objeto à teoria do caos, mais conhecidos como sistemas dinâmicos não-lineares.

Esta teoria estuda o comportamento aleatório e imprevisível dos sistemas, mostrando uma faceta onde podem ocorrer irregularidades na uniformidade da natureza como um todo. Isto ocorre a partir de pequenas alterações que aparentemente nada têm a ver com o evento futuro, alterando toda uma previsão física dita precisa.

Uma das idéias centrais desta teoria, é que os comportamentos casuais (aleatórios) também são governados por leis e que estas podem predizer dois resultados para uma entrada de dados. O primeiro é uma resposta ordenada e lisa e cujo futuro dos eventos ocorre dentro de margens estatísticas de erros previsíveis. O segundo é uma resposta também ordenada, onde porém a resultante futura dos eventos é corrugada, onde a superfície é áspera, caótica, ou seja, ocorre uma contradição neste ponto onde é previsível que os resultados de um determinado sistema será caótico.

Exemplo de caos

Um exemplo claro seria uma pedra atirada numa piscina, as ondas geradas na queda da pedra se propagam até as margens, refletem e retornam, cruzando-se entre si e, portanto, interagindo. Continuando novamente as ondas vão às margens, porém, já distorcidas devido às reflexões anteriores e às interações ocasionadas pelos cruzamentos entre si. Neste momento começam já a ocorrer alguns movimentos aparentemente caóticos, porém ainda previsíveis pois são padrões cíclicos das ondas. Mas se começarmos a jogar pedras aleatoriamente na mesma piscina, quanto mais jogarmos, mais caótico será o padrão das ondas na superfície. Imaginemos agora porém, que no fundo desta piscina exista areia finíssima, apesar dos movimentos aleatórios na superfície, no fundo haverá determinados padrões na areia, caóticos sim, mas seguirão a um padrão de ondas de diversas formas, tamanhos, alturas, estas mudarão à medida em que o corrugamento da superfície muda, porém apesar de todo o caos dos movimentos, é reconhecido um padrão cíclico.

Estatisticamente isto ocorre porque pequenas alterações na alimentação de dados em sistemas de cálculo de previsões podem provocar mudanças drásticas inclusive rupturas a longo prazo. Pois em função de um crescimento inflacionário de realimentação de dados, que realimentam por conseqüência dados futuros, estes podem realimentar o sistema com respostas que levam ao crescimento das alterações numa espiral caótica (inflacionária) que mudará toda a previsão estatística daquele sistema. Ficando assim completamente fora das margens de erro convencionais, porém, apesar do aumento da margem de erro sempre será reconhecido um padrão cíclico realimentado (Espiral), apesar da aparente aleatoriedade.

Em função do efeito caótico, a previsibilidade comportamental dos sistemas em geral, sejam climáticos de uma determinada região, ou movimentos econômicos à exemplo das movimentações das bolsas de valores, ou populações de insetos de um determinado ecossistema, tem uma margem de erro bastante elástica quando comparada à margem convencional.

Efeito Borboleta

Ao efeito da realimentação do erro foi chamado mais tarde por Lorenz de Efeito Borboleta ou seja uma dependência sensível dos resultados finais às condições iniciais da alimentação dos dados.

Ou:

Normalmente este efeito é ilustrado com a noção de que o bater das asas de uma borboleta num extremo do globo terrestre, pode provocar uma tormenta no outro extremo no espaço de tempo de semanas.

O efeito borboleta demonstra a impossibilidade de uma previsão meteorológica perfeita e prova que o determinismo de Laplace para certos casos passa a não funcionar, pois para se ter uma previsão meteorológica de extrema precisão, os dados de alimentação além de serem infinitos, deveriam ser de precisão infinita, portanto, a memória física de processamento de dados também deveria ser infinita. Sendo impossível dispor de tal sistema, é impossível se executar uma previsão determinista nestas bases...

Equações de Lorenz

Edward Lorenz continuando em sua pesquisa dos sistemas dinâmicos, elegeu três equações diferenciais que acabaram por ficar conhecidas como Equações de Lorenz para representar graficamente o comportamento dinâmico através de computadores.

Equações de Lorenz:

Lorenz continuou observando os efeitos caóticos, notou que variações muito pequenas aleatórias poderiam gerar um efeito dominó que elevava o grau de incerteza em eventos futuros, realimentando os graus de aleatoriedade.

Desenvolveu teorias que demonstravam que a partir de variações mínimas haviam acelerações nas precipitações de dados em determinadas direções que mudavam completamente o resultado de uma determinada experiência.

Em função de suas constatações o meteorologista chegou à conclusão que as previsões de fenômenos climáticos só poderiam adquirir certo grau de precisão utilizando equações matemáticas que levassem em conta o alto grau de incerteza nos eventos.

Fatos podem ser alterados a partir das mais simples reações.

(Parte 1 de 2)

Comentários