Dimensionamento de fios e cabos

Dimensionamento de fios e cabos

(Parte 1 de 3)

Fonte: http://www.ipce.com.br/introducao_grd.htm

Os cabos elétricos de potência em baixa tensão são os responsáveis pela transmissão de energia em circuitos de até 1000 volts.

Os principais componentes de um cabo de potência em baixa tensão são o condutor, a isolação e a cobertura, conforme indicado na figura 1.

Figura 1: Cabo elétrico de potência em baixa tensão típico

Alguns cabos elétricos podem ser dotados apenas de condutor e isolação, sendo chamados então de condutores isolados, enquanto que outros podem possuir adicionalmente a cobertura (aplicada sobre a isolação), sendo chamados de cabos unipolares ou multipolares, dependendo do número de condutores (veias) que possuem. A figura 2 mostra exemplos desses três tipos de condutores elétricos.

Figura 2: Tipos de cabos elétricos de potência em baixa tensão

cabos elétricos

Em função de suas propriedades elétricas, térmicas, mecânicas e custos, o cobre e o alumínio são os metais mais utilizados desde os primórdios da indústria de fabricação de fios e

A prática nos leva a observar que, quase sempre, as linhas aéreas são construídas em alumínio e as instalações internas são com condutores de cobre. Verificamos ainda que, segundo a norma de instalações elétricas de baixa tensão, a NBR 5410, é proibido o uso de alumínio em instalações residenciais. Por quê essas diferenças entre os dois metais no campo de fios e cabos elétricos?

conexões

As três principais diferenças entre o cobre e o alumínio são: condutividade elétrica, peso e Condutividade elétrica

Começamos a entender as diferenças pela condutividade elétrica. Todos os materiais conduzem corrente elétrica de um modo melhor ou pior. O número que expressa a capacidade que um material tem de conduzir a corrente é chamado de condutividade elétrica. Ao contrário, o número que indica a propriedade que os materiais possuem de dificultar a passagem da corrente é chamado de resistividade elétrica.

Segundo a norma “International Annealed Copper Standard” (IACS), adotada em praticamente todos os países, é fixada em 100% a condutividade de um fio de cobre de 1 metro de comprimento com 1 mm2 de seção e cuja resistividade a 20ºC seja de 0,01724 W.mm2/m (a resistividade e a condutividade variam com a temperatura ambiente). Dessa forma, esse é o padrão de condutividade adotado, o que significa que todos os demais condutores, sejam em cobre, alumínio ou outro metal qualquer, têm suas condutividades sempre referidas a aquele condutor. A tabela 1 ilustra essa relação entre condutividades.

Material Condutividade relativa cobre mole 100 cobre meio-duro 97,7 cobre duro 97,2 alumínio 60,6

Tabela 1: Condutividade relativa entre diferentes materiais

A tabela 1 pode ser entendida da seguinte forma: o alumínio, por exemplo, conduz 3,9 % (100 - 60,6) menos corrente elétrica que o cobre mole. Na prática, isso significa que, para conduzir a mesma corrente, um condutor em alumínio precisa ter uma seção aproximadamente, 60 % maior que a de um fio de cobre mole. Ou seja, se tivermos um condutor de 10 mm2 de cobre, seu equivalente em alumínio será de 10 x 1,6= 16 mm2. Dissemos “aproximadamente” porque a relação entre as seções não é apenas geométrica e também depende de alguns fatores que consideram certas condições de fabricação do condutor, tais como eles serem nus ou recobertos, sólidos ou encordoados, etc.

Peso

A densidade do alumínio é de 2,7 g/cm3 e a do cobre de 8,9 g/cm3 .

Se calcularmos a relação entre o peso de um condutor de cobre e o peso de um condutor de alumínio, ambos transportando a mesma corrente elétrica, verificamos que, apesar de o condutor de alumínio possuir uma seção cerca de 60% maior, seu peso é da ordem da metade do peso do condutor de cobre.

A partir dessa realidade física, estabeleceu-se uma divisão clássica entre a utilização do cobre e do alumínio nas redes elétricas. Quando o maior problema em uma instalação envolver o peso próprio dos condutores, prefere-se o alumínio por sua leveza. Esse é o caso das linhas aéreas em geral, onde as dimensões de torres e postes e os vãos entre eles dependem diretamente do peso dos cabos por eles sustentados. Por outro lado, quando o principal aspecto não é peso, mas é o espaço ocupado pelos condutores, escolhe-se o cobre por possuir um menor diâmetro. Essa situação é encontrada nas instalações internas, onde os espaços ocupados pelos eletrodutos, eletrocalhas, bandejas e outros são importantes na definição da arquitetura do local.

Deve-se ressaltar que, embora clássica, essa divisão entre a utilização de condutores de cobre e alumínio possui exceções, devendo ser cuidadosamente analisada em cada caso.

Conexões

Uma das diferenças mais marcantes entre cobre e alumínio está na forma como se realizam as conexões entre condutores ou entre condutor e conector.

O cobre não apresenta requisitos especiais quanto ao assunto, sendo relativamente simples realizar as ligações dos condutores de cobre.

No entanto, o mesmo não ocorre com o alumínio. Quando exposta ao ar, a superfície do alumínio é imediatamente recoberta por uma camada invisível de óxido, de difícil remoção e altamente isolante. Assim, em condições normais, se encostarmos um condutor de alumínio em outro, é como se estivéssemos colocando em contato dois isolantes elétricos, ou seja, não haveria contato elétrico entre eles. Nas conexões em alumínio, um bom contato somente será conseguido se rompermos essa camada de óxido. Essa função é obtida através da utilização de conectores apropriados que, com o exercício de pressão suficiente, rompem a camada de óxido. Além disso, quase sempre são empregados compostos que inibem a formação de uma nova camada de óxido, uma vez removida a camada anterior.

A flexibilidade dos condutores elétricos

Um condutor elétrico pode ser constituído por uma quantidade variável de fios, desde um único fio até centenas deles. Essa quantidade de fios determina a flexibilidade do cabo. Quanto

mais fios, mais flexível o condutor e vice-versa

Para identificar corretamente o grau de flexibilidade de um condutor, é definida pelas normas técnicas da ABNT a chamada classe de encordoamento. De acordo com essa classificação apresentada pela NBR NM 280, são estabelecidas seis classes de encordoamento, numeradas de 1 a 6. A norma define ainda como caracterizar cada uma das classes, o que está indicado na coluna “características” da tabela 2.

Classe de encordoamento Descrição Característiccas

1 condutores sólidos (fios) é estabelecida uma resistência elétrica máxima a

20ºC em w/km

2 condutores encordoados, compactados ou não é estabelecida uma resistência elétrica máxima de 20ºC em w/km e um número mínimo de fios no condutor

4, 5 e 6 condutores flexíveis é estabelecida uma reistência elétrica máxima de 20ºC em w/km e diâmetro máximo dos fios elementares do condutor

Tabela 2: Classes de encordoamento de condutores elétricos conforme a NBR NM 280

Em relação aos termos utilizados na tabela 2, temos:

Um fio é um produto maciço, composto por um único elemento condutor. Trata-se de uma ótima solução econômica na construção de um condutor elétrico, porém apresenta uma limitação no aspecto dimensional e na reduzida flexibilidade, sendo, em conseqüência, limitado a produtos de pequenas seções (até 16 mm2)

Figura 3: Fio

O termo condutor encordoado tem relação com a construção de uma corda, ou seja, partindo-se de uma série de fios elementares, eles são reunidos (torcidos) entre si, formando então o condutor. Essa construção apresenta uma melhor flexibilidade do que o fio. As formações padronizadas de condutores encordoados (cordas) redondos normais são: 7 fios (1+6), 19 fios (1+6+12), 37 fios (1+6+12+18) e assim sucessivamente. Nessa formação, a camada mais externa possui o número de fios da camada anterior mais seis.

Figura 4: Condutor encordoado redondo normal

Um condutor encordoado compactado é uma corda na qual foram reduzidos os espaços entre os fios componentes. Essa redução é realizada por compressão mecânica ou trefilação. O resultado desse processo é um condutor de menor diâmetro em relação ao condutor encordoado redondo normal, porém com menos flexibilidade.

Figura 5: Condutor encordoado compactado

Um condutor flexível é obtido a partir do encordoamento de um grande número de fios de diâmetro reduzido.

Figura 6: Condutor flexível

Observe que a NBR NM 280 estabelece valores de resistência elétrica máxima, número mínimo e diâmetro máximo dos fios que compõem um dado condutor. Isso, na prática, resulta que diferentes fabricantes possuam diferentes construções de condutores para uma mesma seção nominal (por exemplo, 10 mm2). A garantia de que o valor da resistência elétrica máxima não seja ultrapassada está diretamente relacionada à qualidade e à pureza do cobre utilizado na confecção do condutor.

ISOLAÇÃO DOS CONDUTORES ELÉTRICOS Histórico

Os primeiros cabos isolados de que se tem notícia datam de 1795, utilizados em uma linha telegráfica na Espanha e eram isolados em papel. Seguiram-se os condutores cobertos por guta percha (uma planta nativa da Índia), os cabos em papel impregnado em óleo, os cabos em borracha natural (início do século X), em borracha sintética (EPR) e PVC (ambos logo após a Segunda Guerra Mundial).

Embora possuíssem excelentes características isolantes, os cabos isolados em papel foram perdendo aplicações ao longo do tempo, principalmente devido à dificuldade de manuseio durante a sua instalação, sobretudo na realização de emendas e terminações. Isso propiciou a popularização dos cabos com isolações sólidas, tais como o PVC.

Para que serve a isolação?

A função básica da isolação é confinar o campo elétrico gerado pela tensão aplicada ao condutor no seu interior. Com isso, é reduzido ou eliminado o risco de choques elétricos e curtos-circuitos.

Podemos comparar a camada isolante de um cabo com a parede de um tubo de água. No caso do tubo, a parede impede que a água saia de seu interior e molhe a área ao seu redor. Da mesma forma, a camada isolante mantém as linhas de campo elétrico (geradas pela tensão aplicada) “presas” sob ela, impedindo que as mesmas estejam presentes no ambiente ao redor do cabo.

No caso do tubo, não pode haver nenhum dano à sua parede, tais como furos e trincas, sob pena de haver vazamento de água. Da mesma forma, não podem haver furos, trincas, rachaduras ou qualquer outro dano à isolação, uma vez que isso poderia significar um “vazamento” de linhas de campo elétrico, com subsequente aumento na corrente de fuga do cabo, o que provocaria aumento no risco de choques, curtos-circuitos e até incêndios.

Principais características das isolações sólidas

(Parte 1 de 3)

Comentários