Introdução a farmacologia

Introdução a farmacologia

(Parte 1 de 2)

I - Princípios gerais

História da Farmacologia

As civilizações antigas usavam uma mistura de magia, religião e drogas para o tratamento de doenças e as drogas freqüentemente eram tidas como mágicas, sendo oriundas de plantas ou animais. Aquele que detinha o conhecimento sobre as drogas e poções era respeitado e temido.

O conhecimento das drogas cresceu paralelamente ao conhecimento das funções orgânicas como anatomia, fisiologia, bioquímica, e ao desenvolvimento da química. (PAGE, C; CURTIS, M; SURTER, M; WALKER, M; HOFFMAN, B.Farmacologia Integrada. São Paulo: Manole, 1999)

Definição de Farmacologia: é o estudo das substancias que interagem com sistemas vivos através de processos químicos, particularmente através da sua ligação a moléculas reguladoras e ativação ou inibição dos processos orgânicos normais (KATZUNG, 2005). É a ciência voltada para o estudo das drogas sob todos os aspectos, desde as suas origens até os seus efeitos no homem. Atualmente, a farmacologia é estudada em seus aspectos de farmacodinâmica e farmacocinética.

1 - CONCEITOS

Fármaco – Uma substância definida, com propriedades ativas, produzindo efeito terapêutico.

Droga – Qualquer substância que interaja com o organismo produzindo algum efeito.

Medicamento – É uma droga utilizada com fins terapêuticos ou de diagnóstico.

Muitas substâncias podem ser consideradas medicamentos ou não, depende da finalidade com que foram usadas.

Por exemplo:

A vitamina C se for obtida por meio dos alimentos é considerada um nutriente, mas se for administrada na forma pura para correção de estados carências ou como estimulante das defesas orgânicas é definida como um medicamento

Reações Adversas:

Relacionadas com a ação farmacológica principal do fármaco: Podem ocorrer quando há um aumento da dose ou interação entre fármacos. São classificadas como A – “aumentadas” e são previsíveis. Ex: Hemorragias por anticoagulante.

Não-relacionadas com a ação farmacológica principal do fármaco: Podem ser entendidas quando aparecem em conseqüência de dose excessiva, mas com efeitos não relacionados ao modo de ação. Ex: Hepatotoxicidade ocasionada por analgésicos.

Podem ser também imprevisíveis, pois podem ocorrer mesmo com doses terapêuticas. Ex: Anemia aplática com o uso de antibacterianos

São classificadas como B – “bizarras” e são chamadas de idiossincráticas.

2 - FARMACODINÂMICA

A farmacodinâmica estuda a inter-relação da concentração de uma droga e a estrutura alvo, bem como o respectivo mecanismo de ação. No que concerne ao mecanismo de ação, os fármacos podem ser classificados em dois grandes grupos.

a-) Fármacos estruturalmente inespecíficos, cuja atividade resulta da interação com pequenas moléculas ou íons encontrados no organismo. As ações dessas drogas dependem, em última análise, de suas propriedades físico-químicas tais como a solubilidade, o pKa, o poder oxi-redutor e a capacidade de adsorção.

b-) Fármacos estruturalmente específicos, cuja atividade resulta da interação com sítios bem definidos apresentam, portanto, um alto grau de seletividade. As drogas desse grupo também apresentam uma relação definida entre sua estrutura e a atividade exercida.

b.1. Fármacos que interagem com enzimas b.2. Fármacos que interagem com proteínas carregadoras.

b.3. Fármacos que interferem com os ácidos nucléicos.

b.4. Fármacos que interagem com receptores.

2.1) Receptores

Receptores são estruturas moleculares altamente especializadas, que tem no organismo afinidade de interar-se com substâncias endógenas com função fisiológica, e que podem também reagir com substâncias exógenas, que tenham características químicas e estruturais comparáveis às substâncias que ocorrem naturalmente no organismo.

Os receptores ligados diretamente ao canal iônico são constituídos por macromoléculas contendo várias subunidades que, pelo modo como se distribuem, formam um canal central (ionóforo). Em pelo menos uma dessas subunidades encontra-se o local de reconhecimento de ligantes ou de fármacos. Os receptores vinculados às proteínas G, quando ativados, desencadeiam um processo de transdução e amplificação, cujo resultado final resulta de uma ativação em cascata de sistemas enzimáticos.

Os receptores ligados a proteínas de transdução são receptores de membrana que incorporam um domínio intercelular de proteína quinase ( em geral, tirosina quinase) em sua estrutura. Podem fazer uma acoplamento direto ou indireto, ex. receptor de insulina, receptor de fator de crescimento. Os receptores nucleares são receptores que regulam a transcrição de genes.

2.2) Ligação fármaco-receptor

Tipos:

Ligações covalentes;

Ligações iônicas;

Ligações de H ou pontes de H;

Ligações dipolo-dipolo;

Ligações de Van der Walls;

A ligação covalente é uma ligação forte e estável podendo ser irreversível; as outras ligações não são permanentes, e as mais observadas. Isso decorre no intervalo e na regularidade das doses. Assim tem-se:

♦ Uma molécula de fármaco combina-se reversivelmente com um único receptor.

♦ Todos os receptores são idênticos e acessíveis ao fármaco.

♦ Somente pequena fração do fármaco participa da formação de complexos.

♦ A resposta biológica é proporcional ao grau de ocupação.

2.3) Conseqüências da ligação fármaco-receptor

A afinidade de uma droga por algum componente macromolecular específico da célula e sua atividade estão intimamente relacionados a sua estrutura química. A configuração espacial, o arranjo atômico, e a disposição da molécula determinam especificidade e encaixe com o receptor farmacológico.

Se a estrutura do fármaco for específica ao receptor ocorrerá uma interação farmacológica à situação, podendo ou não decorrer em atividade intrínseca. Chama-se agonista a droga que apresenta afinidade pelo receptor e atividade intrínseca na célula; agonista parcial é aquela que possui afinidade e atividade intrínseca reduzida; o agonista inverso é a droga que apresenta afinidade e atividade intrínseca contrária a ação original da mesma. O antagonista possui afinidade, mas, não apresenta mesma atividade intrínseca.

O conhecimento da localização e função do receptor de fármacos permite ao farmacologista prever com segurança os efeitos colaterais e interações que possam ocorrer com o uso clínico dos medicamentos.

O estudo do mecanismo de ação da droga é de grande importância, não só para o uso racional adequado e consciente da droga, como para a elucidação de fenômenos fisiológicos e bioquímicos nos diversos níveis da estrutura do organismo.

3- FARMACOCINÉTICA

A farmacocinética estuda o caminho percorrido pelo medicamento no organismo, desde a sua administração até a sua eliminação. Pode ser definida, de forma mais exata, como o estudo quantitativo dos processos de absorção, distribuição, biotransformação e eliminação dos fármacos ou dos seus metabólitos. O fármaco não cria ações no organismo, ele atua aumentando ou diminuindo o metabolismo em determinada situação.

Existem conceitos básicos na farmacocinética cuja compreensão é fundamental para a utilização dos medicamentos. O primeiro deles refere-se ao que é chamado de biodisponibilidade: a quantidade de uma substância que, introduzida no organismo, ganha a circulação e, portanto, torna-se disponível para exercer sua atuação terapêutica. Com a via intravenosa a biodisponibilidade é de 100%, pois toda substância alcança a corrente circulatória. Mas no caso da via oral (ou outra via que não a intravenosa), a absorção nunca é total e, portanto, a substância não ficará 100% disponível, pois é certo que parte não conseguirá chegar à corrente sangüínea.

⇒ Biodisponibilidade: É a fração da droga não alterada que atinge seu local de ação após a administração por qualquer via.

⇒A concentração máxima (Cmax) que a substância atinge no plasma e o tempo máximo (Tmax) para aquela concentração ser atingida, são aspectos do comportamento das drogas dentro do organismo utilizados como parâmetros que definem as doses terapêuticas, as reações adversas e as intoxicações com medicamentos.

⇒Bioequivalência é o aspecto no qual comparamos a biodisponibilidade de dois medicamentos, isto é, como ambos se comportam no organismo em termos de disponibilidade para exercer sua ação terapêutica. Caso ambos tenham Cmax e Tmax semelhantes, ou seja, AUC equiparáveis, são considerados bioequivalentes. Assim tem-se um medicamento genérico, caso tenha passado pela prova da bioequivalência, sendo sua biodisponibilidade semelhante àquela do medicamento padrão ou de referência.

Cinética:

Ele é desintegrado pelo estômago, absorvido pelo intestino vai para a corrente sangüínea onde é transportado até o local da inflamação.

Dinâmica:

Lá o diclofenaco atua inibindo a atividade da ciclooxigenase e consequentemente diminui a produção de prostaglandinas as quais, por serem vasodilatadores potentes, aumentam a permeabilidade vascular e causam as reações inflamatórias, ou seja, o diclofenaco diminue a produção de prostaglandinas e a inflamação.

Cinética:

Depois de exercer sua função o diclofenaco é metabolizado pelo fígado e depois eliminado pelos rins.

Farmacodinâmica

Farmacocinética

3.1) Absorção e distribuição das drogas

A absorção é definida como a passagem de um fármaco de seu local de administração para o plasma. A absorção deve ser considerada para todas as vias de administrção exceto para a endovenosa. Há casos, como a inalação de um aerossol, ou para aplicação tópica, em que a absorção não é necessária para a ação do fármaco, mas para grande maioria, só ocorre ação farmacológica se houver absorção. Dessa forma, a via de administração é um fator importante na ação terapêutica do fármaco.

Vias de Administração de Fármacos

a-) Administração sublingual: É necessária uma resposta rápida, uma vez que a região sublingual é extremamente irrigada e conectada aos vasos de bom calibre, especialmente se o fármaco é instável ao pH gástrico ou é metabolizado rapidamente pelo fígado.

b-) Administração oral: Na grande maioria, os fármacos são tomados pela boca e engolidos. Via de regra cerca de 75% de um fármaco oralmente administrado são absorvidos em 1-3 h. Deve-se considerar a motilidade gastrintestinal, o fluxo sanguíneo esplâncnico, o tamanho das partículas, a formulação e fatores físico-químicos.

As formas de administração por via oral, como comprimidos, drágeas, cápsulas, xaropes são simples e práticos, conferindo comodidade ao usuário. Devido às necessidades terapêuticas, as preparações farmacêuticas são formuladas normalmente de modo a produzir as características de absorção desejadas. Assim, as cápsulas podem ser elaboradas de modo a permanecerem intactas por algumas horas após a ingestão, para retardar sua absorção ou os comprimidos podem ter um revestimento resistente com a mesma finalidade. Pode-se ter incluído numa cápsula uma mistura de partículas de liberação lenta e rápida , para produzir absorção prolongada.Essas preparações podem reduzir a frequência de administração necessária, e diminuir os efeitos adversos relacionados com elevadas concentrações plasmáticas logo após a administração.

c-) Administração retal: A administração retal é utilizada para fármacos que têm, necessariamente, produzir um efeito local, ou para a produção de efeitos sistêmicos. A absorção por via retal muitas vezes não é confiável, mas esta via pode ser útil em pacientes incapazes de tomar medicações pela boca (apresentando vômitos, crianças, idosos, portadores de transtornos psiquiátricos ou em estado de coma).

d-) Administração cutânea: Esta é utilizada principalmente quando se quer um efeito local sobre a pele. A absorção é considerável, podendo levar aos efeitos sistêmicos. Muitas drogas são mal absorvidas pela pele devido à baixa solubilidade das mesmas. Tem-se aumentado o uso de formas de administração transdérmica, em que o fármaco é incorporado a uma embalagem presa com fita adesiva a uma área de pele fina. Essas embalagens adesivas produzem um estado de equilíbrio estável e têm diversas vantagens, especialmente a facilidade de retirada no caso de efeitos indesejáveis. Contudo, o método só é adequado para certos fármacos relativamente lipossolúveis, e essas preparações são caras.

Muitos fármacos podem ser aplicados como gotas oculares, baseando-se na produção de seus efeitos pela absorção através do epitélio do saco conjuntival.

e-) Administração por inalação: A inalação é a via usada para anestésicos voláteis e gasosos. Para esses agentes o pulmão serve como via de administração e eliminação, e as trocas rápidas que são possíveis em conseqüência da grande área de superfície e do grande fluxo sangüíneo permitem a obtenção de ajustes rápidos na concentração plasmática.

f-) Administração por injeção: A injeção endovenosa é a via mais rápida e mais precisa para administração de um fármaco. A concentração máxima eficaz que chega aos tecidos depende fundamentalmente da rapidez da injeção. Na administração endovenosa não ocorre absorção, apenas distribuição. A injeção subcutânea ou intramuscular de fármacos produz geralmente um efeito mais rápido que a administração oral, mas a taxa de absorção depende muito do local de injeção e de fatores fisiológicos , especialmente do fluxo sangüíneo local. Os fatores que limitam a velocidade na absorção a partir do local de injeção são: difusão através do tecido, remoção pelo fluxo sangüíneo local, formação de complexos entre fármacos (ex: insulina + protamina, benzilpenicilina) ou injeções oleosas (para hormônios). As drogas comumente utilizadas apresentam um tamanho molecular pequeno e portanto essas drogas deixam facilmente a circulação por filtração capilar, embora isso possa ser modificado pela extensão de ligação da droga às proteínas plasmáticas como a albumina. Em presença de ligação às proteínas, a concentração de droga livre é menor, a atividade farmacológica diminui, e a depuração da droga por filtração glomerular e por processos ativos também está diminuída. A proteína ligada serve como reservatório de fármaco. Uma droga extensamente ligada às proteínas plasmáticas pode ser deslocada de forma competitiva por outra droga que também apresente ligação extensa.

(Parte 1 de 2)

Comentários