(Parte 7 de 12)

Para prover um traço mais estável, os osciloscópios modernos tem uma função chamada trigger (desencadear ou disparar). Quando o triggering é utilizado, o instrumento irá parar cada vez que a varredura chegue no extremo direito da tela e retornar de volta ao lado esquerdo da tela. O osciloscópio então aguarda um evento específico antes de começar a desenhar o próximo traço. O evento de trigger (disparo) é comumente acionado quando a forma de onda da entrada atinge uma tensão em uma direção específica (tensão crescente ou decrescente) determinada pelo usuário.

Este recurso ressincroniza a base de tempo ao sinal de entrada, impedindo o deslizamento horizontal do traço. Desta forma, o trigger permite a visualização de sinais periódicos tais como ondas quadradas e ondas seno. O circuito de Trigger também permite a visualização de sinais não-periódicos, tais como pulsos que não se repetem em uma taxa fixa.

Os Tipos de trigger incluem:

•trigger externo, um pulso de uma fonte externa conectada a uma entrada dedicada do osciloscópio. •trigger de borda, um detector de borda que gera um pulso quando o sinal passa de uma tensão limiar especificada em uma direção específica. •video trigger, um circuito que extrai pulsos sincronizantes de formatos de vídeo tais como PAL e NTSC e disparam a base de tempo em todas as linhas, em uma linha específica, em todos os campos, ou em um quadro. Este circuito é tipicamente encontrado dos dispositivos monitores de forma de onda. •trigger por atraso, aguarda um tempo específico após passar por uma tensão limiar antes de começar a varredura.

Nenhum circuito de trigger funciona instantaneamente, sempre ocorre um pequeno atraso, porém um circuito de trigger por atraso estende este valor até um intervalo conhecido e ajustável. Deste modo, o operador pode examinar um pulso particular em um longo grupo de pulsos.

A maioria dos osciloscópios também permitem que você tire a base de tempo e a insira um sinal no amplificador horizontal. Isto é chamado de modo X-Y, e é útil para ver a relação de fase entre dois sinais, o que é comum em análise de rádio e televisão. Quando os dois sinais são senóides de frequência e fases variáveis, o traço resultante é chamado de curva de Lissajous.

Alguns osciloscópios possuem cursores, que são linhas que podem ser movidas sobre a tela para medir o intervalo de tempo entre dois pontos, o a diferença entre duas tensões.

Muitos osciloscópios possuem um ou mais canais de entrada, permitindo que eles mostrem mais de um sinal na tela. Geralmente o osciloscópio tem um conjunto de controles verticais para cada canal, porém apenas um sistema de trigger e base de tempo.

Um osciloscópio dual-timebase (base de tempo duplo) possui dois sistemas de trigger de modo que dois sinais possam ser vistos em diferentes eixos de tempo. Isto também é chamado de modo "magnificação". O usuário mantém um sinal complexo desejado usando uma configuração de trigger compatível. Então ele permite a "magnificação", "zoom" ou "base de tempo dupla", e pode mover uma janela para observar os detalhes do sinal complexo.

Algumas vezes o evento que o usuário deseja ver pode ocorrer apenas ocasionalmente. Para capturar estes eventos, alguns osciloscópios são "storage scopes" (osciloscópios de armazenamento) que preservam o sinal mais recente na tela.

Alguns osciloscópios digitais podem fazer a varredura a velocidades baixas como uma vez por hora, emulando um gravador em papel de tira. Isto é, o sinal passa pela tela da direita para a esquerda. A maioria dos osciloscópios mais sofisticados mudam do modo de varredura para o modo de escrita em tira com cerca de uma varredura a cada dez segundos. Isto ocorre porque caso contrário, o osciloscópio iria aparentar estar quebrado: está coletando informações, porém o ponto não pode ser visto na tela.

Osciloscópio 26 Exemplos de usos

Ponta de prova de um osciloscópio

O uso clássico de um osciloscópio é diagnosticar uma peça defeituosa em um equipamento eletrônico. Em um rádio, por exemplo, se olha no esquema elétrico do aparelho e se localizam as conexões entre os estágios (como mixer eletrônico, osciladores eletrônicos, amplificadores).

Então o terra do osciloscópio é ligado ao terra do circuito, e a ponta de prova é colocada na conexão entre dois estágios no meio do circuito.

Quando o sinal esperado está ausente, se sabe que algum estágio precedente do circuito está defeituoso. Como a maioria das falhas ocorre por causa de um único componente defeituoso, cada medida pode provar que metade do estágio de uma peça complexa está funcionando corretamente, ou seja, que não é a causa do defeito.

Uma vez que o estágio defeituoso é encontrado, testes mais específicos deste estágio podem geralmente mostrar a um profissional experiente qual componente está com defeito. Uma vez que este componente é substituído, a unidade pode voltar à operação, ou ao menos o próximo defeito pode ser procurado.

Outro uso possível é a checagem de um circuito novo. Muito frequentemente circuitos novos se comportam abaixo do esperado devido aos níveis de tensão errados, ruído elétrico ou erros no projeto. Os circuitos digitais geralmente operam a partir de um oscilador (clock), então um osciloscópio de traço duplo (dual-trace) é necessário para verificar circuitos digitais. Osciloscópios com "armazenamento" são muitos úteis para "capturar" efeitos eletrônicos raros que podem levar a uma operação defeituosa.

Outro uso é para engenheiros de software que programam circuitos eletrônicos. Muitas vezes o osciloscópio é a única maneira de ver se o software está rodando corretamente. Para essa aplicação existe, no entanto, um equipamento mais apropriado, o analisador lógico, uma espécie de osciloscópio digital que permite a leitura de dezenas de canais simultaneamente.

Conselhos para uso

O problema mais típico encontrado quando se utiliza um osciloscópio não familiar é que o traço não está visível.

Muitos osciloscópios mais recentes possuem "opções de reset" ou um botão "auto set up". Utilize-o caso haja confusão. Alguns instrumentos possuem um botão "beamfinder". Ele limita o tamanho do traço de modo que ele irá aparecer na tela.

Outra razão para a "perda" do traço é um ajuste de luminosidade (brightness) muito baixo. Todos os osciloscópios possuem um ajuste de luminosidade que serve para tornar o traço visível tanto em varreduras lentas como nas mais rápidas. Um ajuste muito tenue pode tornar o traço pouco visível. um ajuste muito intenso pode deixar o sinal borrado. Alguns osciloscópios possuem um ajuste de foco que permite ajustar a espessura do traço.

Verifique que primeiro você configure as opções de canal para acoplamento "DC", com trigger automático. Aumente o valor do volts per division (volts por divisão) do canal (efetivamente diminuindo a Altura da linha) até a linha aparecer. Configure o time per division (tempo por divisão) próximo da velocidade do evento desejado, e então ajuste o volts per division até o evento aparecer em um tamanho útil.

Os osciloscópios comumente possuem uma saída de teste que pode ser medida para se asseguram que um canal e sua ponta de prova estejam funcionando. Quando se utiliza um osciloscópio não familiar, é recomendado medir a este sinal primeiro.

Osciloscópio 27

A capacitância do fio na ponta de prova pode fazer com que o osciloscópio mostre imprecisamente sinais de alta velocidade. Se o sinal parece distorcido, ou seja se ele mostrar pontas ou elevações estranhas, a capacitância da pronta de prova deve ser ajustada. Muitas destas (como as com atenuação de 10x) tem um pequeno parafuso de ajuste para a capacitância. A maioria dos osciloscópio provê uma saída de teste que produz uma onda quadrada para o ajuste da ponta. O ajuste deve ser feito de modo que as bordas da onda pareçam um quadrado, sem excessos nem arredondamento.

A largura de banda das pontas de teste devem ser iguais ou exceder à largura de banda dos amplificadores de entrada do osciloscópio.

Em geral, a conexão de terra do osciloscópio deve ser ligada ao terra do circuito que está sendo analisado. A maioria dos osciloscópios possuem um conector de terra em sua saída. Para medir precisamente sinais de alta frequência, o cabo de terra deve ser o mais curto possível; para frequências acima de 100 MHz, o conector embutido terra deve ser removido e substituído por um pequeno pino de terra que sai do anel de terra na ponta da prova.

Se o osciloscópio possui uma conexão com o terra das linhas de alimentação, e provável que o pino de terra também esteja ligado ao terra (através do chassi do osciloscópio). Se o circuito em teste também tem sua referência com o terra das linhas de alimentação, então conectar o pino de terra a qualquer sinal teria o mesmo efeito de um curto-circuito ao terra, podendo causar danos ao circuito em teste ou ao próprio osciloscópio. Isto pode ser evitado alimentando-se o osciloscópio através de um transformador de isolação.

Existem dois acoplamentos possível no canal de entrada:

"AC" coupling (acoplamento AC) bloqueia qualquer DC (corrente continua) no sinal. Isto é útil quando se mede um pequeno sinal em um offset DC. Note que o modo de acoplamento a AC é feito se adicionando um capacitor internamente, que, apesar de ter um valor alto, pode afetar o modo como os sinais de baixa frequência irão aparecer.

"DC" coupling (acoplamento DC) usado quando se mede uma tensão contínua, não bloqueia nenhum sinal.

Verifique se você está ajustando o trigger do canal correto. Ajuste o trigger delay para zero. Ajuste o nível de trigger até o evento desejado. Após tudo, ajuste do trigger delay até a característica desejada do sinal aparecer.

As pontas de prova do osciloscópio são relativamente caras e frágeis. Para reduzir a capacitância, o condutor no cabo de prova é algumas vezes mais fino que um fio de cabelo humano. A "caneta" plástica da ponta é muitas vezes fácil de se quebrar. Deve-se evitar deixar a ponta de prova em algum local em que ela possa ser pisada.

Seleção

Os osciloscópios geralmente possuem uma lista das características acima. A medida básica é a largura de banda de seus amplificadores verticais. Os osciloscópios típicos para propósito geral devem possuir uma largura de banda de no mínimo 100 MHz, apesar de larguras de bandas muito menores serem aceitáveis para aplicações em frequências na faixa de áudio. Uma taxa de varredura útil pode ser de um segundo a 100 nanossegundos, com triggering e varredura com atraso. Para trabalhar com sinais digitais, dois canais são necessários, e um instrumento com uma taxa de varredura de no mínimo 1/5 da frequência máxima do sistema digital é recomendada.

O benefício principal de um osciloscópio de qualidade é a boa qualidade do circuito de trigger. Se o trigger for instável, o display sempre será um pouco confuso. A qualidade melhora enormemente conforme a frequência de resposta e a estabilidade da tensão do trigger aumentam.

Os osciloscópios de empactamento digital costumavam mostrar sinais electricos, do género A-2B, denominados por vezes de quebrados devido às baixas taxas de armazenamento, porém este problema hoje em dia é muito mais raro devido ao aumento no tamanho das memórias.

Até o ano de 2004, um osciloscópio dual-channel, com armazenamento, de 150MHz, novo custava cerca de US$1.200, sendo considerado muito bom para o uso geral. A maior largura da banda obtida até o ano de 2005 é a da família de osciloscópios Tektronix TDS6000C com uma banda digitalmente melhorada de até 15 GHz e custando cerca de US$150.0.

Osciloscópio 28

Como funciona Osciloscópio de raios catódicos (CRO)

Diagrama em corte de um osciloscópio CRO típico. 1. Eletrodos de deflexão por tensão 2. Acelerador de elétrons 3. Raio de elétrons 4. Bobina de foco 5. Lado interior de tela revestido com fósforo

O mais novo e mais simples tipo de osciloscópio consiste num tubo de raios catódicos, um amplificador vertical, uma base de tempo, um amplificador horizontal e uma fonte de alimentação. Estes são chamados de osciloscópios 'analógicos' para serem distinguidos dos osciloscópios 'digitais' que se tornaram relativamente comuns nos anos 90 e 2000.

Antes da introdução do tubo de raios catódicos (CRO) nesta forma atual, o mesmo já vinha sendo utilizado em outros instrumentos de medição. O tubo de raios catódicos é uma estrutura de vidro com vácuo no seu interior, similar aos tubos de televisões a preto e branco, que possuem uma face plana coberta com um material fosforescente (o fósforo). A tela possui tipicamente menos de 20 cm de diâmetro, sendo muito menos do que as telas da maioria das televisões.

A parte no pescoço do tubo é o acelerador de elétrons, que é uma placa de metal aquecida com uma malha de fios (o grid) na sua frente. Um pequeno potencial de grid é usado para bloquear os elétrons de serem acelerados quando o raio precisa ser desligado, como durante o retorno do varrimento ou quando nenhum evento de trigger (disparo de evento) ocorre. É aplicada uma diferença de potencial de, no mínimo, algumas centenas de volts para fazer com que a placa aquecida (o cátodo) fique carregado negativamente com relação às placas de deflexão. Para osciloscópios com uma largura de banda maior, onde o traço pode mover-se mais rapidamente através da tela, é tipicamente utilizada uma tensão de aceleração pós-deflexão de mais de 10 0 volts, aumentando a velocidade com que os elétrons atingem o fósforo. A energia cinética dos elétrons é então convertida pelo fósforo em luz visível no ponto do impacto. É através da variação dessa tensão que se obtém o ajuste de luminosidade.

Quando ligado, um tubo de raios catódicos (CRT) normalmente mostra um único ponto brilhante no centro da tela, porém este ponto pode ser movido eletrostaticamente ou magneticamente. O CRT de um osciloscópio utiliza a deflexão eletrostática.

Entre o acelerador de elétrons e a tela existem dois pares de placas metálicas opostos chamados de placas de deflexão. O amplificador vertical gera um diferença de potencial através de um par de placas, gerando um campo elétrico vertical, através do qual o raio de elétrons passa; quando os diferenciais das placas são os mesmos, o raio não é defletido. Quando a placa superior é positiva com relação à inferior, o raio é defletido para cima; quando o campo é invertido, o raio é defletido para baixo. O amplificador horizontal realiza uma função semelhante com os pares de placas de deflexão horizontais, fazendo com que o raio se mova para a direita ou para a esquerda. Este sistema de deflexão é chamado de deflexão eletrostática, e é diferente do sistema de deflexão eletromagnética utilizado nos tubos das televisões. Em comparação à deflexão magnética, a deflexão eletrostática pode seguir mudanças aleatórias no potencial, porém, é limitada a ângulos de deflexão pequenos.

Osciloscópio 29

A base de tempo é um circuito eletrônico que gera uma tensão de rampa. Esta é uma tensão que muda continuamente e linearmente no tempo. Quando ela atinge um valor pré-definido a rampa é reiniciada, com a tensão retornando ao seu valor inicial. Quando um evento de trigger é reconhecido o reset é ativado, permitindo que a rampa volte ao seu estado inicial e cresça novamente. A tensão da base de tempo geralmente controla o amplificador horizontal. O seu efeito é a varredura do raio de elétrons a uma velocidade constante da esquerda para a direita através da tela, e então retornando o raio rapidamente para a esquerda para iniciar a próxima varredura. A base de tempo pode ser ajustada para o período do sinal medido.

(Parte 7 de 12)

Comentários