Exercícios resolvidos

Exercícios resolvidos

EXERCÍCIOS RESOLVIDOS

1 – Qual a pressão manométrica dentro de uma tubulação onde circula ar se o desnível do nível do mercúrio observado no manômetro de coluna é de 4 mm?

Solução:

Considere: densidade do Mercúrio = ρhg = 13600 kg/m3 e aceleração gravitacional g = 9,81 m/s2

Observando o Princípio de Stevin, calculamos a pressão manométrica da tubulação através da seguinte equação:

pman = ρhg . g . h = 13600 x 9,81 x 0,004 = 533,6 Pa

A pressão absoluta é a soma dessa pressão com a pressão atmosférica (101325 Pascals).

2 – Qual a vazão de água (em litros por segundo) circulando através de um tubo de 32 mm de diâmetro, considerando a velocidade da água como sendo 4 m/s? Lembre-se que 1 m3 = 1000 litros

Solução:

Primeiramente, calculamos a área da secção transversal do tubo:

Agora, podemos determinar a vazão no tubo:

Vazão = V . A = 4 x 0,000803 = 0,0032 m3 /s x 1000 = 3,2 l/s

3 – Qual a velocidade da água que escoa em um duto de 25 mm se a vazão é de 2 litros/s?

Solução: Vazão = V . A

Logo: V = Vazão / A

Logo, V = 0,002/0,00049 = V = 4,08 m/s

4 – Qual a velocidade da água através de um furo na lateral de um tanque, se o desnível entre o furo e a superfície livre é de 2 m?

Solução:

Utilizando a equação de Bernoulli simplificada e considerando z1 = 2 m e g = 9,81 m/s2, podemos calcular a velocidade da água pela equação a seguir:

5 – Qual a perda de carga em 100 m de tubo liso de PVC de 32 mm de diâmetro por onde escoa água a uma velocidade de 2 m/s?

Solução:

Inicialmente devemos calcular o Número de Reynolds:

Com o número de Reynolds e o Diagrama de Moody, obtemos para o tubo liso que o fator de atrito f = 0,02.

6 – Qual a potência teórica da bomba para a instalação esquematizada a seguir, considerando-se que a vazão de água transportada é de 10 m3 /h?

Solução:

Cálculo do fluxo de massa:

10 m3 /h / 3600 s = 0,0027 m3/s x 1000 = 2,77 l/s, ou seja, 2,77 kg/s

Cálculo de perdas localizadas – Conforme tabela da apostila para o PVC e para o metal:

Lsucção = Lvalv. pé + Lcurva + Ltrecho reto

Lsucção = 18,3 + 9 + 1,2 = 28,5 m

Lrecalque = Lrg + Lvr + Ltrecho reto + 3 Lcurvas + Lsaída

Lrecalque= 0,4 + 6,4 + 33 + (3 x 0,9) + 1,5 = 44 m

Tendo a área de cada secção e a vazão (0,00277 m3/s), a velocidade de escoamento da água no ponto 2 (saída) é determinada por:

V2= Vazão / Área 2 = 1,371 m/s

Já a velocidade da sucção é determinada pela equação:

V1= Vazão / Área 1 = 2,43 m/s

Com as velocidades podemos determinar os números de Reynolds para a sucção e para o recalque:

Re = V . D / n onde n = 1,006 x 10-6

Re sucção = 9,2 x 104

Re recalque = 6,9 x 104

Com Reynolds e sabendo que na sucção o tubo é liso e no recalque o tubo tem rugosidade estimada da forma e/D = 0,03, encontramos os valores dos fatores de atrito f da sucção e do recalque.

Com os valores de f podemos calcular a perda de energia na sucção e no recalque:

Logo temos que 1 = 40,85 m2/s2 e que 2 = 47,21 m2/s2

O valor da perda total de energia é de 88,06 m2/s2

Finalmente, após as devidas simplificações na equação de Bernoulli, podemos calcular a potência da bomba da seguinte forma:

Agora basta acessar os sites dos fabricantes de bombas e selecionar nos catálogos qual a mais conveniente para essa faixa de vazão e potência.

7- Qual a perda de carga no tubo?

Considere: tubo liso PVC

υágua = 1,006 x 10-6 m2/s

Vágua = 5 m/s

ρágua = 1000 kg/m3

Cálculo do número de Reynolds:

Cálculo da perda de carga:

Com o número de Reynolds, podemos agora obter o fator de atrito através do diagrama de Moody. Obtém-se o fator de atrito f = 0,095.

  1. Qual a potência da bomba?

Primeiramente, temos que determinar as perdas de carga nos trechos retos e nos acessórios da (válvulas, curvas etc.):

Sucção

Recalque

VP = 15 m

Curvas 90° = 2 x 2 = 4 m

Curva 90º = 2 m

VR = 20 m

Trechos retos = 12 m

Trechos retos = 30 m

Total (Ls) = 29 m

Saída = 3 m

Total (Lr) = 57 m

Cálculo da velocidade de escoamento da água:

Considerando o fluxo de massa igual a 2 kg/s, podemos determinar a vazão simplesmente dividindo esse valor por 1000, pois a vazão é dada em [m3/s]. Fazendo o cálculo, obtém-se Vazão Vz = 0,002 m3/s. Agora, sabendo que o diâmetro da tubulação é de 50 mm, podemos calcular a área da seção transversal do tubo:

Tendo a área e a vazão, a velocidade de escoamento da água é determinada por:

Agora nos resta calcular a perda de carga total na tubulação:

Com Re, obtemos o fator de atrito f no Diagrama de Moody.

Encontramos f = 0,021. Logo:

Finalmente, após as devidas simplificações na equação de Bernoulli, podemos calcular a potência da bomba da seguinte forma:

Observe que a altura z2 é igual a 15m + 1m = 16m, já que o ponto 1 é considerado na superfície livre da água.

Agora basta acessar os sites dos fabricantes de bombas e selecionar nos catálogos qual a mais conveniente para essa faixa de vazão e potência.

Comentários