Motores e geradores

Motores e geradores

(Parte 4 de 7)

O trocador de calor (ou radiador de óleo) tem a finalidade de transferir calor do óleo lubrificante, cuja temperatura não pode ser superior a 130°C, para o meio refrigerante utilizado no motor. Nos motores refrigerados a ar o trocador de calor é instalado na corrente de ar. A transferência de calor para o refrigerante é de aproximadamente 50 Kcal / CVh para os motores refrigerados a água e de 100 Kcal / CVh nos motores com refrigeração a ar.

2.5.3 – ÓLEO LUBRIFICANTE

O óleo lubrificante está para o motor assim como o sangue está para o homem. Graças ao desenvolvimento da tecnologia de produção de lubrificantes, é possível, atualmente, triplicar a vida útil dos motores pela simples utilização do lubrificante adequado para o tipo de serviço. Os óleos lubrificantes disponíveis no mercado são classificados primeiro, pela classe de viscosidade SAE (Society Of Automotive Engineers) e a seguir, pela classe de potência API (American Petroleum Institute).

A característica mais importante do óleo lubrificante é a sua viscosidade, que é a resistência interna oferecida pelas moléculas de uma camada, quando esta é deslocada em relação a outra; é o resultado de um atrito interno do próprio lubrificante. Existem vários aparelhos para medir a viscosidade. Para os óleos lubrificantes utilizados em motores, é adotado o Viscosímetro Saybolt Universal.

O sistema Saybolt Universal consiste em medir o tempo, em segundos, do escoamento de 60 ml de óleo, à determinada temperatura. A indicação da viscosidade é em SSU (Segundos

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 24 / 7

Saybolt Universal). As temperaturas padronizadas para o teste são 70°, 100°, 130° ou 210°F, que correspondem, respectivamente, a 21,1°C, 37,8°C, 54,4°C e 89,9°C. Em essência, consiste de um tubo de 12,25 m de comprimento e diâmetro de 1,7 m, por onde deve escoar os 60 ml de óleo.

2.5.3.1 - CLASSIFICAÇÕES A SAE estabeleceu a sua classificação para óleos de cárter de motor segundo a tabela:

SSU a 0° FSSU a 210 ° F

A letra w (Winter = inverno) indica que a viscosidade deve ser medida a zero grau Farenheit. Observa-se que o número SAE não é um índice de viscosidade do óleo, mas sim uma faixa de viscosidade a uma dada temperatura; exemplificando, um óleo SAE 30 poderá ter uma viscosidade a 210 °F entre 58 e 70 SSU.

O API classificou os óleos lubrificantes, designando-os segundo o tipo de serviço. As classificações API, encontradas nas embalagens dos óleos lubrificantes, são:

– ML (Motor Light).

Óleos próprios para uso em motores a gasolina que funcionem em serviço leve; tais motores não deverão ter características construtivas que os tornem propensos à formação de depósitos ou sujeitos à corrosão dos mancais.

– M (Motor Medium)

Óleos próprios para motores a gasolina, cujo trabalho seja entre leve e severo; tais motores poderão ser sensíveis à formação de depósitos e corrosão de mancais, especialmente quando a temperatura do óleo se eleva, casos em que se torna indicado o uso de óleos motor medium.

– MS (Motor Severe)

Óleos indicados para uso em motores a gasolina sob alta rotação e serviço pesado, com tendência à corrosão dos mancais e à formação de verniz e depósitos de

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 25 / 7 carbono, em virtude não só de seus detalhes de construção como ao tipo de combustível.

– DG (Diesel General)

Óleos indicados para uso em motores Diesel submetidos a condições leves de serviço, nos quais o combustível empregado e as características do motor tendem a não permitir o desgaste e a formação de resíduos.

– DM (Diesel Medium)

São óleos próprios para motores Diesel funcionando sob condições severas, usando, além disso, combustível tendente a formar resíduos nas paredes dos cilindros – sendo, porém, as características do motor tais, que o mesmo é menos sensível à ação do combustível do que aos resíduos e ao ataque do lubrificante.

– DS (Diesel Severe)

Óleos próprios para motores Diesel especialmente sujeitos a serviço pesado, onde tanto as condições do combustível quanto as características do motor se somam na tendência de provocar desgaste e formar resíduos.

Com a finalidade de facilitar a escolha dos óleos pelo consumidor leigo, o API, com a colaboração da ASTM e SAE, desenvolveu o sistema de classificação de serviço indicado pela sigla "S" para os óleos tipo "Posto de Serviço" (Service Station) e C para os óleos tipo "comercial" ou para serviços de terraplanagem. Abaixo a classificação de serviço:

AS = Serviço de motor a gasolina e Diesel; SB = Serviço com exigências mínimas dos motores a gasolina; SC = Serviço de motor a gasolina sob garantia; SD = Serviço de motores a gasolina sob garantia de manutenção; SE = Serviço de motores a gasolina em automóveis e alguns caminhões; CA = Serviço leve de motor Diesel; CB = Serviço moderado de motor Diesel; C = Serviço moderado de motor Diesel e a gasolina e CD = Serviço severo de motor Diesel.

Também as forças armadas americanas estabeleceram especificações para os óleos lubrificantes, que são encontradas nas embalagens comerciais como MIL-L-2104-B e MIL-L- 2104C, para motores Diesel.

As diferenças entre os diversos tipos de lubrificantes reside nas substâncias adicionadas ao óleo para dotá-lo de qualidades outras. São os Aditivos, que não alteram as características do óleo, mas atuam no sentido de reforçá-las. Os aditivos comumente usados são:

Atioxidantes ou inibidores de oxidação

Compostos orgânicos contendo enxofre, fósforo ou nitrogênio, tais como aminas, sulfetos, hidroxisulfetos, fenóis. Metais, como estanho, zinco ou bário,

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 26 / 7 freqüentemente incorporados

Anticorrosivos, preventivos da corrosão ou "venenos" catalíticos

Compostos orgânicos contendo enxofre ativo, fósforo ou nitrogênio, tais como sulfetos, sais metálicos do ácido trifosfórico e ceras sulfuradas.

Detergentes

Compostos organo-metálicos, tais como fosfatos, alcoolatos, fenolatos. Sabões de elevado peso molecular, contendo metais como magnésio, bário e estanho.

Dispersantes

Compostos organo-metálicos, tais como naftenatos e sulfonatos. Sais orgânicos contendo metais com cálcio, cobalto e estrôncio.

Agentes de pressão extrema

Compostos de fósforo, como fosfato tricresílico, óleo de banha sulfurado, compostos halogenados. Sabões de chumbo, tais como naftenato de chumbo.

Preventivos contra a ferrugem

Aminas, óleos gordurosos e certos ácidos graxos. Derivados halogenados de certos ácidos graxos. Sulfonatos.

Redutores do ponto de fluidez

Produtos de condensação de alto peso molecular, tais como fenóis condensados com cera clorada. Polímeros de metacrilato.

Reforçadores do índice de viscosidade

Olefinas ou iso-olefinas polimerizadas. Polímeros butílicos, ésteres de celulose, borracha hidrogenada.

Inibidores de espumaSilicones

Como a viscosidade é a característica mais importante do óleo lubrificante, é natural que os centros de pesquisas do ramo dedicassem especial atenção a essa propriedade.

Sabe-se que todos os óleos apresentam uma sensibilidade à temperatura, no que concerne à viscosidade; alguns serão mais sensíveis que outros, observando-se que os óleos naftênicos sofrem mais a sua ação que os parafínicos.

Com o desenvolvimento técnico exigindo qualidades mais aprimoradas dos óleos, muitas vezes chamados a trabalhar em condições de temperatura bastante variáveis, tornou-se necessário conhecer bem as características viscosidade versus temperatura em uma faixa bastante ampla. A variação da viscosidade com a temperatura não é linear. Ou seja, não é possível estabelecer, a priori, quanto irá variar a viscosidade quando for conhecida a variação de temperatura.

Os estudos desenvolvidos nessa área até os dias atuais, levaram os fabricantes de lubrificantes a produzirem óleos capazes de resistirem às variações de temperatura, de forma a se comportarem como se pertencessem a uma classe de viscosidade a zero grau Farenheit e a outra classe a 210 graus Farenheit. Tais óleos são conhecidos como "multigrade" ou multiviscosos.

Os fabricantes de motores Diesel, também, como resultado das pesquisas que realizam, chegaram a desenvolver composições de óleos que hoje são encontradas a venda no mercado. A Caterpillar desenvolveu o óleo que hoje é comercializado com a classificação denominada "Série – 3", que é indicado para uso em motores Diesel turbo-alimentados e supera todas as classificações API. A Cummins desenvolveu um óleo fortemente aditivado com componentes sintéticos, que denominou de "Premium Blue", cuja licença de fabricação,

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 27 / 7 nos Estados Unidos, já foi concedida à Valvoline. Sua principal característica é a alta durabilidade.

Atualmente, a melhor indicação para lubrificação dos motores Diesel que operam em temperaturas superiores a 14°F (-10°C), recai sobre os óleos multiviscosos (15w40 ou 20w40), que mantém durante o funcionamento do motor a viscosidade praticamente constante e são aditivados para preservar suas características durante um maior numero de horas de serviço.

2.6 – REFRIGERAÇÃO (OU ARREFECIMENTO)

O meio refrigerante na maioria dos casos é água com aditivos para rebaixar o ponto de congelamento (por exemplo: etileno-glicol, recomendado para utilização em regiões mais frias) e para proteger contra a corrosão (óleos emulsionáveis ou compostos que, em contato com a água, tendem a formar películas plásticas). A quantidade do meio refrigerante é pequena (de 3 a 6 litros), para poder chegar rapidamente à temperatura de serviço; eventual reserva é feita no radiador e tanque de expansão.

O rebaixamento da temperatura da água no radiador é da ordem de 5°C. As bolhas de vapor que se formam nos pontos de pressão mais baixa (antes da bomba) devem ser eliminadas através da linha "i" e, chegando ao tanque de expansão "a", se condensam. A capacidade de pressão da bomba centrífuga é de 10 a 20 m de elevação e a quantidade de água em circulação é proporcional à velocidade. O fluxo do meio de refrigeração é controlado por válvula(s) termostática(s).

SISTEMA DE REFRIGERAÇÃO (OU DE ARREFECIMENTO) DO MOTOR DIESEL (Típico)

a = reservatório com tampa de alimentação (tanque de expansão); b = bomba centrífuga; c = bloco do motor; d = cabeçote(s) dos cilindros; e = radiador; f = trocador de calor; g = válvula termostática; h = válvula manual para alimentação; i = eliminação das bolhas de vapor. As temperaturas (em °C) de abertura das válvulas termostáticas estão assinaladas nas circulações correspondentes.

É falsa a idéia de que a eliminação da válvula termostática melhora as condições de refrigeração do motor. Muitos mecânicos, ao se verem diante de problemas de superaquecimento do motor, eliminam a válvula termostática, permitindo que o motor trabalhe abaixo das temperaturas ideais em condições de poucas solicitações e, quando

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 28 / 7 sob regime de maior rotação e carga, não disponha da quantidade suficiente de água para troca de calor. A pressão interna do sistema é controlada pela válvula existente na tampa do radiador (ou do tanque de expansão) que, em geral, é menor que 1,0 at. Pressões entre 0,5 e 1,0 at, permitem o dimensionamento do radiador com menor capacidade, entretanto, com pressões nesta faixa, as juntas e vedações ficam submetidas a solicitações mais elevadas. É necessário manter a pressurização adequada do sistema de refrigeração, de acordo com as recomendações do fabricante do motor, pois baixas pressões proporcionam a formação de bolhas e cavitação nas camisas dos cilindros. Os cabeçotes devem receber um volume adequado de água, mesmo com temperaturas baixas, para não comprometer o funcionamento das válvulas de admissão e escapamento. Normalmente, a pressão de trabalho do sistema de arrefecimento encontra-se estampada na tampa do radiador. Ao substituir a tampa, é necessário utilizar outra de mesma pressão.

a = afluxo; b = saída fria; c = saída quente; d = prato da válvula do lado quente com frestas de vedação para deixar escapar o ar durante o abastecimento; e = prato da válvula lado frio; f = enchimento de cera; g = vedação de borracha; o curso da válvula depende da variação de volume do material elástico (cera) durante a fusão ou solidificação.

a = válvula de sobre-pressão; b = molas de a; c = tubo de descarga; d = válvula de depressão; e = tampa.

2.6.1 – ÁGUA DE REFRIGERAÇÃO

A água do sistema de refrigeração do motor deve ser limpa e livre de agentes químicos corrosivos tais como cloretos, sulfatos e ácidos. A água deve ser mantida levemente alcalina, com o valor do PH em torno de 8,0 a 9,5. Qualquer água potável que se considera boa para beber pode ser tratada para ser usada no motor. O tratamento da água consiste na adição de agentes químicos inibidores de corrosão, em quantidade conveniente, geralmente por meio de um filtro instalado no sistema, conforme recomendado pelo fabricante. A qualidade da água não interfere no desempenho do motor, porém a utilização de água inadequada, a longo prazo, pode resultar em danos irreparáveis. A formação de depósitos sólidos de sais minerais, produzidos por água com elevado grau de dureza, que obstruem

Eng José Cláudio Pereira w.joseclaudio.eng.br Pág. 29 / 7 as passagens, provocando restrições e dificultando a troca de calor, são bastante freqüentes. Água muito ácida pode causar corrosão eletrolítica entre materiais diferentes.

O tratamento prévio da água deve ser considerado quando, por exemplo, for encontrado um teor de carbonato de cálcio acima de 100 ppm ou acidez, com PH abaixo de 7,0.

O sistema de arrefecimento, periodicamente, deve ser lavado com produtos químicos recomendados pelo fabricante do motor. Geralmente é recomendado um "flushing" com solução a base de ácido oxálico ou produto similar, a cada determinado numero de horas de operação.

2.7 – SISTEMA DE PARTIDA

Os dispositivos de partida do motor Diesel podem ser elétricos, pneumáticos ou a mola. A partida elétrica é empregada na maioria dos casos. Utiliza-se se a partida pneumática ou a mola, onde, por qualquer motivo, não seja viável a utilização de partida elétrica, que é o meio de menor custo. A partida a mola só é aplicável em motores Diesel de menor porte, abaixo de 100 CV. Para motores Diesel de grande cilindrada, a partida a ar comprimido é feita por meio da descarga de certa quantidade de ar sob alta pressão em um cilindro predefinido, cujo êmbolo é posicionado próximo ao PMS para receber o primeiro impulso. Ao deslocar-se rapidamente em sentido descendente, faz com que em outros cilindros os êmbolos atinjam o PMS do tempo de compressão e recebam injeção de combustível, iniciando o funcionamento. Nos motores de menor porte, pode-se instalar um motor de partida a ar comprimido, que funciona de modo similar ao motor elétrico. Geralmente esta solução é adotada em ambientes onde, por motivo de segurança, não se permitam o uso de componentes elétricos que possam produzir faíscas.

A potência do motor de partida para os motores Diesel varia de 0,6 a 1,2 CV por litro de cilindrada do motor Diesel. (Valores mais baixos para motores de maior cilindrada e viceversa). Devido ao consumo de energia durante as partidas, os motores Diesel, atualmente, até cerca de 200 CV, utilizam sistema elétrico de 12 Volts. Para os motores maiores, utilizase sistemas de 24 Volts. O motor de partida é dotado de um pinhão na extremidade do eixo (geralmente com 9, 10 ou 1 dentes), montado sobre ranhuras helicoidais que permitem o seu movimento no sentido axial. Este mecanismo é normalmente denominado "Bendix". Quando o motor de partida é acionado, o pinhão avança sobre as ranhuras helicoidais e acopla-se à uma engrenagem instalada na periferia do volante, conhecida como cremalheira do volante, que, na maioria dos motores, tem 132 dentes. (Existem motores com relação cremalheira / pinhão de até 20 : 1). O movimento do pinhão arrasta o volante fazendo com que a árvore de manivelas do motor comece a girar. Nos motores Diesel em boas condições, entre 80 e 120 rpm já há pressão de compressão suficiente para a autoignição e o início de funcionamento, embora existam motores que necessitam de até 350 rpm para partir. Ao iniciar o funcionamento, o motor aumenta a rotação por seus próprios meios e tende a arrastar o motor de partida, porém, como o pinhão está encaixado nas ranhuras helicoidais, ele é forçado a recuar, desacoplando-se da cremalheira do volante e, até que o operador libere a chave de partida, o motor de partida irá girar em vazio.

(Parte 4 de 7)

Comentários