Leis de Kirchhoff

Leis de Kirchhoff

Leis de Kirchhoff

O comportamento dos circutos elétricos é governado por duas leis básicas chamadas Leis de Kirchhoff, as quais decorrem diretamente das leis de conservação de carga e da energia existentes no circuito. Elas estabelecem relações entre as tensões e correntes entre os diversos elementos dos circuitos, servindo assim como base para o equacionamento matemático dos circuitos elétricos. Antes do enunciado das referidas leis, torna-se, entretanto, necessáro a introdução de algumas definições básicas:

ramo: é a representação de um único componente conectado entre dois nós, tal como um resistor ou uma fonte de tensão. Na figura 1, o componente 2, conectado entre os nós 1 e 2, é um ramo do circuito. Portanto, um ramo representa um elemento de dois terminais.

nó: é o ponto de junção de um mais dos componentes básicos de um circuito (ramos). Na figura 1 está representado um circuito simples composto de dois nós (nós 1 e 2). Quando um fio ideal conecta dois nós, os dois nós constituem um único nó.

percurso fechado: é um caminho (fechado) formado por um nó de partida, passando por um conjunto de nós e retornando ao nó de partida, sem passar por qualquer nó mais de uma vez. Um percurso fechado é dito independente quando ele contém um ramo que não pertence a nenhum outro caminho fechado; malha: é um caminho fechado que não contém outro caminho fechado dentro dele. Trata-se, portanto, de um caso especial de caminho fechado. A figura 2 representa um circuito simples composto de 2 malhas (malha 1 e 2). O caminho fechado mais externo do circuito é denominado de malha externa e inclui todos os elementos do circuito no seu interior. As demais malhas são também denominadas de malhas internas.

O número de malhas e nós de um circuito depende da topogia do mesmo. Existe, no entanto, uma relação entre o número de malhas, ramos e nós do circuito dada pela seguinte equação, a qual pode ser facilmente verificada:

m = b - n + 1 (1) m - número de malhas n - número de nós b - número de ramos

Além destas definições também são úteis as seguintes definições:

conexão série: dois ou mais elementos são ditos em série se eles estiverem conectados em seqüência e conduzirem a mesma corrente.

conexão paralela: dois ou mais elementos são ditos em paralelo se eles estiverem conectados aos mesmos dois nós e possuírem a mesma tensão aplicada sobre eles.

PUCRS- FENG - DEE - Disciplina de Circuitos Elétricos I - Prof. Luís Alberto Pereira - 1/8/2004 página 2/4

Figura 1 - Circuito com 2 nós

Emalha 1malha 2 ++ +

Figura 2 - Circuito com 2 malhas

2. Lei das Correntes de Kirchhoff (LCK)

A LCK pode ser enunciada da seguinte forma: a soma das correntes que chegam a um nó é igual à soma das correntes que saem do mesmo nó. Considerando-se as correntes que chegam a um nó como positivas e as que saem como negativas, a Lei das Correntes de Kirchhoff estabelece que a soma algébrica das correntes incidindo em um nó deve ser nula. A LCK é baseada na Lei da Conservação da Carga e pode também ser obtida diretamente dela.

Baseado no enunciado da LCK e considerando-se o circuito mostrado na Figura 1, pode-se escrever a seguinte equação para o nó marcado como 1:

0iii321=−−⇒ 321iii+= (2)

O número de equações independentes obtidas com a aplicação da Lei das Correntes é sempre igual ao número de nós menos 1 (n-1). Isto pode ser comprovado facilmente aplicando-se a Lei das Correntes ao nó 2 da Figura 1, de onde resultará uma equação idêntica à equação acima.

A LTK pode ser enunciada da seguinte forma: a soma das elevações de potencial ao longo de um percurso fechado qualquer (malha) é igual à soma das quedas de potencial no mesmo percurso fechado. Assumindo-se que as quedas de potencial (sentido de percurso do terminal positivo para o negativo) são positivas ao longo do percurso e que as elevações de potencial (sentido do percurso do terminal negativo para o positivo) são negativas, a Lei das Tensões de Kirchhoff estabelece que a soma algébrica das tensões em um percurso fechado é nula. Conforme as definições anteriores, uma malha é um tipo especial de percurso fechado. Assim, a LTK também vale para as malhas que compõem o circuito.

Baseado no enunciado da LTK e considerando-se o circuito da Figura 2, pode-se escrever para a malha 1 a seguinte equação:

0vE2=+−⇒ 2vE= (3)

Para a malha 2 obtém-se do mesmo modo:

0vv21=+−⇒ 21vv= (4)

O número de equações de malha independentes obtidas com a aplicação da Lei das Tensões de Kirchhoff às malhas do circuito é definido pela relação:

Equações de malha independentes = b - n + 1 = m (5)

Para o circuito ilustrado na Figura 2 o número de equações independentes é 2. Pode-se também escrever uma equação para a malha externa. Para esta malha resulta uma equação que é uma combinação linear das equações (2) e (3), sendo portanto redundante. As equações que devem ser consideradas são, assim, apenas as relativas às malhas internas.

PUCRS- FENG - DEE - Disciplina de Circuitos Elétricos I - Prof. Luís Alberto Pereira - 1/8/2004 página 3/4

Figura 3 - exemplo de aplicação da LCK

Emalha 1malha 2 ++ +

Figura 4 - exemplo de aplicação da LTK

4. Número de Equações de Circuito Independentes

Em todo circuito elétrico composto de b elementos básicos existem 2b incógnitas, uma vez que em cada elemento a corrente e a tensão são variáveis serem determinadas em função das fontes de alimentação e da topologia do circuito. Assim, são inicialmente necessárias 2b equações independentes para a determinação completa do circuito. Este número pode ser reduzido para b, usando-se as b relações básicas dos elementos (ver Tabela 1, da apostila de Conceitos Básicos de Circuitos Elétricos). O número de equações passa a ser desta forma igual a b. Usando-se as Lei de Kirchhoff das Correntes obtém-se (n-1) equações de corrente e usando-se a Lei de Kirchhoff das Tensões obtém-se (b-n+1) equações de malha. As Leis de Kirchhoff fornecem portanto as (n-1)+(b-n+1)=b equações independentes necessárias para a solução do circuito. Estas relações podem ser verificadas pelo exemplo mostrado nas Figuras 1 e 2.

5. Exemplo de Solução de Circuitos

Embora não seja o procedimento mais rápido e aconselhável, os circuitos podem sempre ser solucionados estabelecendo-se as 2b equações, conforme o exemplo abaixo mostra. Os procedimentos mais adequados serão analisados quando do estudo do Método das Tensões de Nó (Análise Nodal) e o Método das Correntes de Malha (Análise de Malhas), os quais são mais comumente empregados na prática por serem mais simples e rápidos.

As equações para o circuito mostrado na Figura 3 devem ser estabelecidas e todas as correntes e tensões dos seus elementos determinadas. O elemento 1 é uma fonte independente de tensão simbolizada por E. Os elementos 2 e 3 serão resistores designados por 2Re 3R respectivamente.

Para este circuito existem inicialmente 2b=2.3=6 incógnitas. Como a fonte de tensão possui uma tensão conhecida (Ev1=), existem de fato 5 incógnitas, as quais são: 1i, 2i, 3i, 2v, 3v. Pelas relações básicas de tensão-corrente para resistores (Lei de Ohm) obtém-se:

2 R vi= (i)

3 R vi= (i)

Pela LCK obtém-se para o nó 1:

Pela LTK obtém-se para a malha 1 e 2 respectivamente:

Ev2=(iv)

O sistema formado pelas equações (i)-(v) pode agora ser resolvido. Substituindo-se (iv) e (v) em (i) e (i) obtém-se as correntes nos resistores 1 e 2:

PUCRS- FENG - DEE - Disciplina de Circuitos Elétricos I - Prof. Luís Alberto Pereira - 1/8/2004 página 4/4

Substituindo-se (vi) e (vii) em (i) resulta para a corrente da fonte, designada por i1, a seguinte expressão:

RERERvR v i (vi)

As grandezas 1i, 2i, 3i, 2v, 3v.ficam assim completamente determinadas.

6. Exercícios Propostos

A lista de exercícios abaixo foi selecionada da bibliografia da disciplina. Recomenda-se que todos os exercícios sejam resolvidos.

Charles K. Alexander e Matthew N. O. Sadiku (2003). Fundamentos de circuitos elétricos. Bookman (Central 20, Edição 2000) - Capítulo 2. Questões de revisão: 2.1 a 2.9. Problemas: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.1, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17 e 2.18.

Comentários