Fisiologia humana - resumo

Fisiologia humana - resumo

(Parte 1 de 8)

Movimento Movimento
Humano Humano

Fisiologia do Fisiologia do (2(2aa edição) edição)

Marcus Vinícius C. BaldoMarcus Vinícius C. Baldo

INTRODUÇÃO AO ESTUDO DA MOTRICIDADE1
FISIOLOGIA DA CONTRAÇÃO MUSCULAR3
Miastenia Gravis5
ORGANIZAÇÃO HIERÁRQUICA DOS SISTEMAS MOTORES6
SENSIBILIDADE PROPRIOCEPTIVA1
ORGANIZAÇÃO GERAL DOS SISTEMAS SENSORIAIS1
SENSIBILIDADE ARTICULAR14
SENSIBILIDADE VESTIBULAR15
SENSIBILIDADE MUSCULAR20
Distrofias Musculares24
INTEGRAÇÃO ESPINAL DA MOTRICIDADE25
REFLEXO MIOTÁTICO25
TÔNUS MUSCULAR28
ACOPLAMENTO GAMA-ALFA28
OUTROS REFLEXOS ESPINAIS29
Esclerose Lateral Amiotrófica32
POSTURA E LOCOMOÇÃO3
Lesões da Medula Espinal36
INTEGRAÇÃO CORTICAL DA MOTRICIDADE39
PLANEJAMENTO E EXECUÇÃO DO MOVIMENTO40
CONTROLE INTERNO E EXTERNO DO MOVIMENTO42
APRENDIZADO MOTOR4
Hemiplegia46
Apraxias48
INTEGRAÇÃO SUBCORTICAL DA MOTRICIDADE49
CEREBELO49
Disfunção Cerebelar51
NÚCLEOS DA BASE53
CONTRIBUIÇÃO DOS NÚCLEOS DA BASE PARA O APRENDIZADO E COGNIÇÃO56
Discinesias e Coréia de Huntington58
Doença de Parkinson60
LEITURA COMPLEMENTAR62

Se pararmos um minuto para pensar naquilo que fazemos todos os dias, da hora em que nos levantamos da cama até o momento em que voltamos para ela, vamos chegar à conclusão que nossas vidas não diferem fundamentalmente da vida da maioria dos animais: todos saímos de casa em busca de comida (uns para caçar, outros para ir ao supermercado); escapamos ou enfrentamos inimigos naturais (um predador para uns, ou um assaltante para outros); buscamos parceiros da mesma espécie para acasalar (em geral, em nosso próprio habitat, quer seja a mata atlântica ou uma danceteria); e sempre procuramos um lugar seguro, para descansar e dormir (quer seja procurando uma caverna ou voltando para casa).

Apesar da evidente complexidade dos comportamentos humanos, seus fundamentos não diferem daqueles que observamos em outros primatas, ou mesmo em mamíferos de outras ordens, como os felinos, por exemplo. É por essa razão que os sistemas nervosos desses animais são organizados de forma muito semelhante, sendo que grande parte de nossa história evolutiva é similar à desses e de outros animais. A evolução do sistema nervoso seguiu um caminho ditado por pressões seletivas em que comportamentos mais adaptativos conduziam a uma maior probabilidade de sobrevida do indivíduo, e consequentemente a uma maior probabilidade de que aquele genótipo fosse transmitido à prole, e assim mantido na população.

Já que um dos componentes cruciais do processo evolutivo é a adaptação do indivíduo ao meio ambiente, o qual é repleto de desafios e perturbações muitas vezes imprevisíveis, o animal (rótulo que obviamente aplica-se também a nós) deve reagir a essas perturbações emitindo comportamentos que ou as evitem ou as solucionem. Um exemplo concreto é o animal que deve evitar aproximar-se do território dominado por seu predador ou por algum inimigo potencial. No caso de um encontro inesperado com esse inimigo, o animal deve agir de forma a escapar do perigo, ou então de forma a enfrentá-lo por intermédio de um comportamento de defesa e ataque.

Mesmo nesse exemplo simples, já somos capazes de observar a presença de vários aspectos que compõem o fascinante assunto da Neurofisiologia. Um aspecto evidente, por exemplo, é a necessidade de um sistema motor, que não permita só a locomoção pura e simples, mas que também inclua a organização de estratégias otimizadas na emissão de movimentos precisos e eficazes. Também é evidente que o animal adaptado deve saber reconhecer a presença de inimigos naturais, ou de elementos que indiquem a potencial presença desse inimigo (como o território a ser evitado, no exemplo acima). Esse reconhecimento requer processos sensoriais e cognitivos bastante elaborados, necessários à detecção e identificação de inúmeros elementos presentes no mundo habitado pelo animal (e que além de seus inimigos, inclui a capacidade de reconhecer seus alimentos, seus parceiros sexuais, seu próprio território, etc.). Menos evidente, mas tão importante quanto os aspectos motores e sensoriais, é aquele componente mais diretamente relacionado à manutenção homeostática das diversas variáveis fisiológicas que compõem nosso organismo. Esse componente, sob responsabilidade do sistema neurovegetativo, está relacionado ao controle, instante a instante, de variáveis fisiológicas tais como pressão arterial, glicemia, fluxo sangüíneo para diferentes órgãos, secreções glandulares (exócrinas e endócrinas), dentre inúmeras outras não menos importantes.

Vemos, portanto, que a adaptação de um animal ao seu meio ambiente requer uma estreita interação do animal com esse meio exterior. No entanto, essa interação será adaptativa somente se o meio interior do animal (ou seja, o conjunto de suas variáveis fisiológicas) também estiver ajustado dentro de margens satisfatórias. Para que o animal possa agir tanto sobre o meio exterior quanto sobre o meio interior, é necessário que sistemas efetores intermedeiem essas ações: no caso das interações com o meio exterior, as ações do animal são intermediadas pelo sistema motor, e no caso das interações do animal com seu meio interior, pelo sistema neurovegetativo. Como já deve ter ficado claro, as ações intermediadas por esses sistemas efetores seriam nada eficazes, e até mesmo deletérias para o animal, se este não fosse provido com informações oriundas tanto do meio exterior (imagens, sons, odores, etc.) quanto de seu meio interior (pressão arterial, nível glicêmico, pH plasmático, força de contração exercida pelos músculos, etc.). Essas informações são fornecidas pelo sistema sensorial, composto, na verdade, por um conjunto de subsistemas sensoriais distintos, mas que compartilham entre si princípios gerais de organização muito similares. A Figura 1 esquematiza a interação, realizada pelo sistema nervoso central (SNC) do animal, tanto com o meio exterior quanto com seu meio interior.

Embora o assunto principal do presente texto seja a fisiologia do sistema motor, deve ser notado, como um convite à neurofisiologia, que não é possível uma compreensão satisfatória da motricidade sem um embasamento nos demais tópicos dessa disciplina. Ou seja, sem uma fundamentação adequada em mecanismos básicos relacionados ao sistema sensorial (o que faremos adiante, ao menos parcialmente), não seria possível compreender grande parte da função motora, a qual depende estreitamente da aferência proporcionada por diferentes subsistemas sensoriais (por exemplo, proprioceptivo, visual e somestésico, dentre os mais importantes). A atividade motora depende de um rigoroso controle das funções vegetativas, já que a motricidade envolve ajustes locais e sistêmicos de inúmeras variáveis tais como fluxo sangüíneo, pressão arterial, débito cardíaco, freqüência e amplitude respiratórias, temperatura, dentre muitas outras. Logo, um estudo da função motora requer uma compreensão das funções vegetativas subjacentes ou concomitantes. Além disso, é também necessária a compreensão dos processos biofísicos envolvidos na geração e condução de potenciais bioelétricos, necessários, dentre outros processos, para a propagação de impulsos nervosos e para o acoplamento dos eventos de excitação e contração muscular. E finalmente, o estudo de mecanismos celulares e moleculares relativos à transmissão sináptica é necessário para uma adequada compreensão não só dos eventos que ocorrem na junção neuromuscular, mas também dos processos de integração neural relacionados à organização da motricidade e ao aprendizado motor.

Meio interior Meio exterior

SNC: Sistema Nervoso Central S: Sistema Sensorial SNV: Sistema Neurovegetativo SM: Sistema Motor

Figura 1 – Esquema da interação do sistema nervoso central com os meios exterior e interior.

Toda e qualquer atividade motora é produzida pela ação de um único tipo de tecido, que constitui o músculo estriado esquelético (excetuando-se, obviamente, os movimentos produzidos pela musculatura lisa e estriada cardíaca, cuja atividade é modulada pelo sistema neurovegetativo). Cada músculo esquelético é envolvido por uma capa de tecido conjuntivo que forma os tendões, nas extremidades do músculo. É composto por centenas de fibras musculares, que são células musculares enfeixadas em uma direção preferencial. Cada célula (ou fibra) muscular é inervada por um único axônio que se origina em um neurônio, por isso denominado neurônio motor ou motoneurônio. Os corpos celulares dos motoneurônios localizam-se no corno anterior (ventral) da medula espinal ou em núcleos do tronco cerebral que contribuem para a composição dos nervos cranianos.

A contração de um músculo é o resultado da contração relativamente independente das fibras musculares que o compõem. Um único motoneurônio pode inervar várias fibras musculares distintas de um mesmo músculo, já que seu axônio pode emitir ramificações que farão contatos sinápticos com essas diferentes fibras (sem esquecermos que uma dada fibra muscular recebe o contato sináptico de um único motoneurônio). Sem entrarmos em detalhes biofísicos e moleculares, o potencial de ação que chega ao terminal sináptico do motoneurônio leva à liberação de acetilcolina, neurotransmissor responsável pela transmissão sináptica na junção neuromuscular. A liberação e difusão de acetilcolina pela fenda sináptica leva à ativação de receptores colinérgicos na membrana pós-sináptica da fibra muscular, resultando em uma alteração da permeabilidade de canais iônicos e em uma conseqüente despolarização da membrana da fibra muscular. A geração e propagação de um potencial de ação na fibra muscular culmina com a abertura de canais iônicos seletivos ao cálcio, o qual é um cofator

Figura 2 – Estrutura do músculo estriado esquelético.

essencial no processo bioquímico de contração. As miofibrilas, que preenchem a fibra muscular, constituem-se em repetições sucessivas de uma estrutura protéica, o sarcômero, que é a unidade molecular do processo contrátil. A contração muscular pode ser concebida como uma reação bioquímica semelhante a qualquer outra, mas que se caracteriza por apresentar uma estrutura espacial altamente organizada, acontecendo em uma direção preferencial, e

levando a um encurtamento dos sarcômeros, das miofibrilas, das fibras musculares, e então do músculo como um todo.

Como um mesmo motoneurônio pode inervar diferentes fibras musculares, a atividade conjunta dessas fibras estará subordinada à atividade do respectivo motoneurônio. Se esse motoneurônio for ativado e sofrer um potencial de ação isolado, todas as fibras musculares que ele inerva serão também ativadas, e realizarão uma contração isolada denominada abalo muscular. Esse conjunto composto por um motoneurônio e as respectivas fibras que ele inerva é por isso denominado unidade motora. O que lhe confere essa unidade é o fato de ou permanecer em repouso ou ser ativada por inteiro.

O conceito de unidade motora é muito importante em fisiologia muscular, pois nos ajuda a entender, ao menos parcialmente, o mecanismo pelo qual o sistema nervoso controla a força de contração muscular. Como as unidades motoras de um dado músculo podem ser recrutadas independentemente umas das outras (já que dependem da ativação de motoneurônios distintos), a força de contração pode ser graduada em função da quantidade de unidades motoras recrutadas pelo sistema nervoso em um dado instante. Além desse mecanismo de regulação da força de contração (denominando recrutamento), um outro importante mecanismo é utilizado pelo sistema nervoso central. Nesse segundo

mecanismo, o intervalo temporal entre potenciais de ação sucessivos que trafegam por um dado motoneurônio determina o grau de somação temporal dos abalos produzidos nas fibras musculares daquela unidade motora (Figura 3). Dependendo portanto da freqüência dos potenciais de ação em um motoneurônio, as fibras musculares por ele inervadas poderão apresentar perfis de contração que vão de abalos isolados ao tétano completo, onde não se pode mais

distinguir contrações isoladas, e quando o músculo desenvolve a sua máxima força de contração.

B) Somação temporal de abalos musculares C) Tétano incompleto

D) Tétano completo

120 Hz

50 Hz

37 Hz 15 Hz força tempo

A) Abalos musculares sucessivos

Figura 3 – Gradação da força muscular em função da freqüência de estimulação.

Miastenia Gravis

A condição clínica conhecida como miastenia gravis caracteriza-se por uma desordem da transmissão neuromuscular no músculo estriado esquelético, levando a uma perda progressiva da força muscular, daí o nome da doença: mio (músculo) + astenia (fraqueza). A miastenia gravis é uma doença autoimune, podendo ser fatal se acometer os músculos respiratórios. Por razões ainda não inteiramente esclarecidas, o sistema imune de pacientes portadores de miastenia gravis produz anticorpos contra receptores colinérgicos nicotínicos de seus próprios músculos estriados. Além do bloqueio dos receptores colinérgicos pelos anticorpos, impedindo a ação da acetilcolina liberada na junção neuromuscular, a ação dos anticorpos leva a alterações degenerativas da própria junção, o que também compromete o funcionamento dessa conexão sináptica.

Uma alternativa terapêutica é a administração de drogas que inibem a acetilcolinesterase, enzima que degrada a acetilcolina depois de liberada na fenda da sinapse neuromuscular. A inibição dessa enzima prolonga a ação da acetilcolina, em parte compensando a menor disponibilidade de receptores funcionantes. Outro recurso terapêutico é a utilização de drogas que suprimem a resposta imune, diminuindo assim a agressividade da doença. Com um acompanhamento médico cuidadoso, o prognóstico a longo prazo de pacientes portadores de miastenia gravis pode ser favorável.

Como apontado anteriormente, nosso sistema nervoso é o resultado de milhões de anos de evolução filogenética. Em função disso, a organização morfológica e funcional de nossa motricidade guarda em sua constituição a memória dessa história evolutiva, sendo a sua organização em níveis hierárquicos uma dessas características evolutivas. Podemos então observar que, de acordo com essa hierarquia, o sistema motor apresenta estruturas, como a medula espinal, que são relativamente mais simples tanto do ponto de vista anatômico e histológico quanto do ponto vista funcional. Tanto a complexidade morfológica quanto a funcional aumenta gradativamente à medida que subimos nessa hierarquia, ou seja, à medida que passamos a estudar o papel, na motricidade, de estruturas tais como o tronco cerebral, os núcleos da base e o cerebelo, e finalmente o córtex cerebral (Figura 4).

Essa organização hierárquica do sistema nervoso pode ser associada a diferentes aspectos da motricidade, embora essas diferenças sejam, até certo ponto, simplificações de caráter puramente didático. Assim, podemos dividir os movimentos em três classes relativamente distintas: os movimentos reflexos, os movimentos rítmicos e os movimentos voluntários. Em termos da complexidade em sua organização, movimentos reflexos entrariam na classe dos mais simples, enquanto os movimentos voluntários representariam os de maior complexidade. Se imaginarmos um organismo primitivo, é fácil imaginar que um dos mais rudimentares comportamentos motores corresponderia ao reflexo que afastaria o animal, ou uma parte dele, de algum estímulo lesivo. Em organismos mais complexos, a possibilidade de locomoção foi obtida por meio da aquisição de movimentos rítmicos, produzidos por estruturas que

Figura 4 – Corte sagital do segmento cefálico humano.

Giro do cíngulo Ventrículo lateral

Cerebelo

Meninges sobre o lobo parietal

IV ventrículo

Seio venoso sagital Corpo caloso

Lobo occipital

Corpos quadrigêmeos

Corpos mamilares

Tálamo Fórnix

Quiasma óptico Seio frontal

Lobo frontal

Ponte Seio esfenoidal

Hipófise

Medula espinal

Espaço subaracnóideo Dura máter

Margens do foramen magnum

Bulbo

Mesencéfalo geravam contrações estereotipadas, alternadas e rítmicas da musculatura. E com o aumento na complexidade dos organismos, movimentos mais elaborados eram possíveis graças à aquisição de estruturas neurais que participavam na geração e controle desses movimentos, representados, por exemplo, por nossa habilidade motora manual durante a execução de movimentos voluntários. Em relação à organização hierárquica do sistema motor, movimentos reflexos estereotipados são muito bem organizados pela medula espinal, mas movimentos voluntários elaborados requerem a participação integrada dos demais níveis hierárquicos, incluindo uma ampla e crucial intervenção de várias áreas do córtex cerebral.

(Parte 1 de 8)

Comentários