Fisiologia humana - resumo

Fisiologia humana - resumo

(Parte 3 de 8)

Figura 8- Exemplos de alguns mecanismos moleculares de transdução sensorial.

membrana de um fotoceptor tem sua condutância alterada pela incidência de luz (Figura 8). Mecanismos moleculares semelhantes são, no entanto, compartilhados por diversos tipos de receptores e em diferentes espécies animais, o que sugere princípios unificadores e justifica um estudo comparativo.

O processo de transdução começa pela detecção de um dado estímulo pelo receptor sensorial. O mecanismo comum a todo receptor é a geração de um potencial gerador (ou potencial receptor), caracterizado por uma alteração do potencial elétrico de membrana da célula receptora (Figura 9). A alteração do potencial de membrana é, nesse caso, sempre uma conseqüência de modificações na condutância de canais iônicos, essas resultantes da presença do estímulo sensorial. O potencial gerador compartilha, portanto, mecanismos semelhantes àqueles envolvidos no potencial sináptico. Como na maioria dos potenciais sinápticos, o potencial gerador também não produz diretamente um potencial de ação. O local de geração de um potencial gerador, e o local de geração do respectivo potencial de ação são, geralmente, separados, podendo ser diferentes sítios numa mesma célula, ou até mesmo diferentes células sensoriais. Por meio de potenciais eletrotônicos, o sinal elétrico que caracteriza o potencial gerador alcança as regiões do receptor onde um impulso nervoso poderá ser iniciado, propagando-se então em direção ao sistema nervoso central. O potencial gerador é, portanto, um potencial local e graduado, ou seja, restrito à célula receptora, e possuindo uma amplitude variável que reflete a intensidade do estímulo sensorial aplicado. Em receptores destinados à sensibilidade dolorosa, por exemplo, o potencial gerador é produzido nas ramificações axonais, propagando-se eletrotonicamente à porção inicial do axônio e aí podendo dar origem a um potencial de ação.

O passo final no processo de transdução é a geração de um impulso nervoso na fibra nervosa aferente, que irá conduzir a informação sensorial para o interior do sistema nervoso central. Enquanto o potencial gerador é local e graduado, o potencial de ação que se propaga na fibra aferente apresenta uma característica tudoou-nada, que se manifesta por uma amplitude aproximadamente constante. A recepção sensorial envolve a transformação de estímulos sensoriais, cuja amplitude varia continuamente, em um conjunto de impulsos tudo-ou-nada, semelhante à conversão analógico-digital bem conhecida na engenharia. Uma conseqüência imediata e muito importante desse tipo de conversão relaciona-se à codificação da intensidade, pelo sistema nervoso, de um estímulo sensorial. Já que apenas uma seqüência de potenciais de ação estará a disposição para ser processada pelos circuitos sensoriais, as características de um estímulo estarão codificadas no padrão temporal dos impulsos que chegam a esses circuitos. Mais especificamente, a freqüência dos impulsos num trem de potenciais de ação é que codifica a intensidade do estímulo sensorial associado àquela descarga. A codificação, por meio da freqüência de potenciais de ação, da intensidade de um estímulo sensorial é análoga a um dos mecanismos empregados na regulação da força de contração muscular, como vimos anteriormente.

Intermediando esse processo, temos, como vimos, a geração do potencial receptor, cuja amplitude é proporcional à intensidade do estímulo. Na fibra nervosa aferente, a descarga de potenciais de ação terá uma freqüência que será, por sua vez, proporcional à amplitude do potencial gerador. A intensidade de um dado estímulo é também codificada pela quantidade de receptores sensoriais recrutados naquela estimulação. Por exemplo, a intensidade de uma pressão na pele não só é codificada pela freqüência de potenciais de ação nas fibras aferentes que compõem as vias somestésicas, mas também pela quantidade de receptores sensoriais ativados por aquela estimulação, e portanto pela quantidade de fibras aferentes que vão conduzir simultaneamente aquela informação ao sistema nervoso central. Aqui também encontramos um mecanismo análogo ao utilizado na regulação da força de contração muscular, onde o recrutamento de um maior ou menor número de unidades motoras reflete-se diretamente sobre a força exercida pelo músculo.

Uma característica fundamental de todo receptor sensorial é o perfil temporal do potencial gerador. Um receptor pode apresentar um potencial gerador cuja amplitude declina com o tempo, mesmo na presença de um estímulo sensorial contínuo e de intensidade constante. Esse declínio é denominado adaptação sensorial, e está intimamente relacionado à função particular de cada receptor. Assim, receptores denominados tônicos, ou de adaptação lenta, sinalizam estímulos prolongados, enquanto os denominados fásicos, ou de adaptação rápida, servem à detecção de transientes ou à sinalização de estímulos que variam rapidamente no tempo. Deixar de sentir um odor, claramente perceptível alguns minutos antes, é um típico exemplo de adaptação dos receptores olfativos.

Circuitos sensoriais A informação que parte de um conjunto de receptores sensoriais, conduzida por potenciais de ação, será transmitida através de uma série de “estações sensoriais”, as quais terão o papel de processar esses sinais em estágios mais elaborados de integração.

Uma via sensorial constitui-se, assim, em uma série de neurônios conectados sinapticamente e relacionados a uma mesma modalidade sensorial. Define-se unidade sensorial como o conjunto formado por uma única fibra aferente e todos os receptores sensoriais que ela inerva. A razão por trás dessa definição é que a estimulação de qualquer um dos receptores de um mesma unidade sensorial ativará a mesma fibra aferente, de maneira indistinguível para o sistema nervoso. Pela mesma razão, o conjunto de receptores pertencentes à mesma unidade sensorial compõe o que se denomina de campo receptivo daquela unidade (Figura 10). O conceito de unidade sensorial, mais uma vez, possui um paralelismo (não acidental) com o conceito de unidade motora, discutido anteriormente.

O conceito de campo receptivo pode ser aplicado a qualquer neurônio pertencente a um circuito sensorial. Por exemplo, um neurônio localizado no córtex visual primário será ativado pela estimulação de uma região circunscrita do campo visual. O campo receptivo desse neurônio corresponde, portanto, ao conjunto de fotoceptores associados àquela porção do campo visual. Como veremos, o conceito de campo receptivo é essencial para que possamos compreender o processamento da informação nos vários sistemas sensoriais.

Sensibilidade articular

Diferentes tipos de mecanoceptores estão localizados nas cápsulas das articulações. Esses receptores, além de sua morfologia, diferem quanto a aspectos funcionais, como limiares e velocidades de adaptação. Receptores de adaptação lenta

Figura 10- Organização de um campo receptivo.

Figura 9- Eventos biofísicos no receptor sensorial e na fibra aferente.

são propícios para a detecção de posições da articulação, enquanto os de adaptação rápida são mais sensíveis à velocidade e aceleração dos movimentos articulares.

A percepção que temos da posição e dos movimentos de nossos membros é denominada cinestesia. Durante muito tempo acreditou-se que as informações originadas nas articulações fossem as principais responsáveis pela percepção cinestésica. Evidências anatômicas e fisiológicas têm indicado, entretanto, que a sensibilidade muscular também contribui para a percepção cinestésica. Por exemplo, tem-se verificado que os receptores articulares não são sensíveis aos ângulos intermediários de uma articulação, mas apenas aos ângulos mais extremos. Além disso, indivíduos submetidos à colocação de uma prótese, em substituição a uma articulação, são ainda capazes de perceber as posições do respectivo membro.

Enquanto tem-se demonstrado a contribuição da sensibilidade muscular para a cinestesia, uma percepção cinestésica plena depende da integração de informações musculares, articulares e também somestésicas.

As fibras aferentes articulares pertencem aos grupos I e I, e de maneira semelhante às aferências de origem muscular, como veremos adiante, vão integrar o lemnisco medial, alcançando os núcleos posteriores do tálamo e daí o córtex somestésico. Essas projeções, da mesma forma que as projeções de origem cutânea, são topograficamente organizadas. Além das projeções articulares contribuírem, ao menos parcialmente, na elaboração da percepção cinestésica, a ativação de receptores articulares pode modular a atividade de neurônios motores espinais e corticais, modificando, por exemplo, os limiares de reflexos miotáticos.

Sensibilidade vestibular

O termo propriocepção foi proposto por

Sherrington para designar as aferências sensoriais originadas em músculos e articulações. Como vimos, essas aferências fornecem informações sobre a posição e movimentos dos membros, permitindo que o sistema nervoso tenha uma “imagem” do corpo no espaço. Vamos aqui considerar também como proprioceptivas as informações fornecidas pelo sistema vestibular. A inclusão da sensibilidade vestibular como uma modalidade proprioceptiva deve-se à importante inter-relação dessa aferência sensorial com aquelas originadas em músculos e articulações quanto à organização da motricidade. Aferências vestibulares fornecem informações sobre a posição, movimentos lineares e movimentos angulares da cabeça. Essas informações deverão integrar-se àquelas fornecidas por músculos e articulações para que posturas adequadas e movimentos harmoniosos possam ser executados. Além disso, movimentos oculares compensatórios são produzidos a partir de informações vestibulares, constituindo uma série de reflexos denominados reflexos vestíbulo-oculares.

O labirinto ósseo é um conjunto de cavidades localizadas na porção petrosa do osso temporal, que abriga as estruturas auditivas e vestibulares. No interior do labirinto ósseo encontra-se o labirinto membranoso, constituído de uma monocamada epitelial, e preenchido com endolinfa. O labirinto vestibular membranoso é composto por dois conjuntos de estruturas: os órgãos otolíticos (sáculo e utrículo) e os canais semicirculares. Os primeiros são responsáveis pela detecção da posição estática da cabeça e de seus movimentos lineares, enquanto os últimos possuem uma estrutura destinada à detecção de movimentos de rotação do segmento cefálico.

Os canais semicirculares são toros que se comunicam entre si por meio de uma câmara, o utrículo. Antes de cada canal penetrar no utrículo, seu diâmetro se duplica formando a ampola, estrutura que abriga o epitélio sensorial. Há um conjunto de três canais semicirculares em cada lado do crânio

(denominados anterior, posterior e horizontal), sendo que esses três canais formam, aproximadamente, ângulos retos entre si (Figura 1). O utrículo e o sáculo localizam-se na porção ventromedial do labirinto sendo que o epitélio sensorial (mácula) do utrículo situa-se horizontalmente, enquanto o sáculo possui a mácula localizada em um plano sagital.

Dois tipos de células ciliadas (tipo I e tipo

I) são responsáveis pelo processo de transdução sensorial na periferia vestibular. Essas células assemelham-se, no entanto, quanto à organização morfológica desses cílios e ao seu papel funcional. Em geral, os cílios estão imersos em algum tipo de substrato, que fornece um meio cuja inércia favorece a sua deflexão que, como veremos, é o início do processo de transdução.

Nos órgãos otolíticos, os cílios das células ciliadas estão envolvidos por uma capa gelatinosa. No utrículo, o epitélio sensorial situa-se sobre o assoalho da câmara com os cílios direcionados verticalmente. No sáculo, o epitélio sensorial situa-se na parede vertical, com os cílios direcionados horizontalmente. A capa gelatinosa que envolve os cílios do epitélio do sáculo e utrículo está impregnada de pequenos cristais de carbonato de cálcio, mais densos que a endolinfa circundante. A mera ação da força gravitacional, agindo sobre esses cristais, será suficiente para defletir os cílios do epitélio sensorial. Além da aceleração da gravidade, que entra em cena devido a mudanças da posição estática da cabeça, os cílios serão também defletidos, devido à inércia dos cristais de cálcio, por acelerações lineares. A deflexão do conjunto de cílios em direção ao cinocílio causa hipopolarização da célula ciliada, enquanto essa célula é hiperpolarizada por deflexões no sentido contrário. A hipopolarização das células ciliadas leva à liberação de um neurotransmissor excitatório, que age sobre a fibra nervosa aferente causando uma aumento em sua freqüência de descarga (Figura 12). A disposição dos epitélios sensoriais no sáculo e utrículo faz com que o primeiro seja sensível a movimentos com componentes no plano sagital, enquanto o segundo possa detectar movimentos no plano horizontal. Portanto, qualquer movimento linear complexo poderá ser descrito por meio de suas componentes vetoriais, detectadas separadamente pelos órgãos otolíticos.

Nos canais semicirculares, a ampola abriga uma estrutura gelatinosa, a cúpula, que obstrui o canal na região ampular, e na qual os cílios das células ciliadas estão fixados. A rotação de um canal semicircular

Figura 1- Vista posterior do labirinto ósseo de um pombo, expondo os canais semicirculares anteriores (A), posteriores (P) e horizontais (H), dos lados direito (D) e esquerdo (E).

no sentido horário faz com que a endolinfa que o preenche tenha uma movimento relativo no sentido anti-horário, deformando a cúpula e defletindo os cílios aí imersos. Se a rotação, com velocidade angular constante, continuar por tempo suficiente, a fricção da endolinfa com as paredes do canal semicircular levará ao desaparecimento do movimento relativo entre eles, e à cessação do processo de ativação sensorial. Vemos, portanto, que é a aceleração angular a grandeza detectada pelos canais semicirculares.

O processo de transdução sensorial no epitélio dos canais semicirculares é semelhante àquele descrito acima para os órgãos otolíticos. A rotação de um canal em um dado sentido provoca a deflexão do conjunto de cílios no sentido correspondente,

levando, por exemplo, à hipopolarização da célula ciliada. Essa hipopolarização tem como conseqüência a liberação de um neurotransmissor excitatório sobre os terminais da fibra aferente, causando um aumento na freqüência de descarga dessa fibra. A rotação do mesmo canal no sentido contrário levará à hiperpolarização da célula ciliada, e à diminuição da freqüência de descarga de potenciais de ação na fibra aferente (Figura 13).

O fato de haver três canais semicirculares, localizados em planos aproximadamente ortogonais entre si, garante que qualquer rotação da cabeça, em torno de qualquer possível eixo, seja detectada por uma combinação adequada de ativação dos canais. Além disso, as atividades dos dois conjuntos de canais estão vinculadas entre si: o canal anterior de um lado está localizado em um plano aproximadamente paralelo ao canal posterior contralateral, formando o que se denomina de um par sinérgico de canais semicirculares. Também localizam-se em um mesmo plano os canais horizontais de ambos os lados. Temos, portanto, três pares de canais sinérgicos: dois pares do tipo anterior-posterior e um par horizontal-horizontal. Assim, uma rotação da cabeça em um plano paralelo a um único canal semicircular irá ativar aquele canal em um dos lados da cabeça, e inibir o canal sinérgico contralateral, sem produzir qualquer ativação ou inibição dos demais canais semicirculares1. A ativação de um dado canal (e a inibição do canal sinérgico contralateral) será interpretada como uma rotação da cabeça naquele respectivo plano. Num caso mais complexo, a ativação e a inibição do conjunto de canais, com uma dada combinação de intensidades, serão integradas e interpretadas permitindo a determinação tanto do plano de rotação da cabeça quanto da magnitude e do sentido da aceleração angular.

(Parte 3 de 8)

Comentários