Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

acionameto motor de passo, Notas de estudo de Engenharia de Manutenção

circuito de acionamento drive de motor de passo

Tipologia: Notas de estudo

2011

Compartilhado em 23/02/2011

jardas-fernandes-ifce-9
jardas-fernandes-ifce-9 🇧🇷

5

(2)

6 documentos

Pré-visualização parcial do texto

Baixe acionameto motor de passo e outras Notas de estudo em PDF para Engenharia de Manutenção, somente na Docsity! 1.INTRODUÇÃO E OBJETIVOS: O objetivo deste trabalho e explicar as características e o funcionamento do chamado MOTOR DE PASSO, um tipo de motor elétrico que pode ser controlado por sinais digitais, tornando-o preciso e de recomendável utilização em aplicações que venham a requerer um ajuste fino de posicionamento. Iniciamos com um estudo rápido e pouco profundo dos motores elétricos em geral. Depois apresentamos o MOTOR DE PASSO, damos alguns detalhes de seu funcionamento e falamos sobre como controlá-lo. Finalmente apresentamos algumas aplicações do motor em estudo, frisando sempre que o preciso controle sobre seus movimentos é o que mais o diferencia dos demais motores elétricos. 2.MOTORES ELÉTRICOS: Um motor elétrico é um dispositivo que transforma energia elétrica em energia mecânica, em geral energia cinética. Ou seja, num motor, a simples presença da corrente elétrica, seja cc ou ac, nos garante movimento em um eixo, que pode ser aproveitado de diversas maneiras dependendo da aplicação do motor. O acionamento de máquinas e equipamentos mecânicos por motores elétricos é um assunto de grande importância econômica. Estima-se que o mercado mundial de motores elétricos de todos os tipos seja da ordem de uma dezena de bilhões de dólares por ano. No campo dos acionamentos industriais, avalia-se que de 70 a 80% da energia elétrica consumida pelo conjunto de todas as indústrias seja transformada em energia mecânica através de motores elétricos. Isto significa que, admitindo-se um rendimento médio da ordem de 80% do universo de motores em aplicações industriais, cerca de 15% da energia elétrica industrial transforma-se em perdas nos motores. No Brasil, a fabricação de motores elétricos é um segmento relevante da atividade econômica. No início da década de 80 a indústria brasileira de motores produziu em torno de três milhões de unidades por ano, tendo mais do que 80 mil unidades acima de 20cv. Entre o fabricante e o usuário final deve existir uma estreita comunicação, de forma que seja feita uma correta seleção do motor a ser utilizado em determinada aplicação. Fundamentalmente o processo de seleção de um acionamento elétrico, corresponde à escolha de um motor que possa atender a, pelo menos, três requisitos do utilizador: · Fonte de alimentação: tipo, tensão, freqüência, simetria, equilíbrio, etc. · Condições ambientais: agressividade, periculosidade, altitude, temperatura, etc. · Exigências da carga e condições de serviço: potência solicitada, rotação, esforços mecânicos, configuração física, ciclos de operação, confiabilidade, etc. A divisão em motores de corrente contínua e de corrente alternada é devida, obviamente, ao tipo de tensão de alimentação. Apresentamos abaixo algumas características básicas dos motores AC e DC: Motores DC: São conhecidos por seu controle preciso de velocidade e por seu ajuste fino e são, portanto, largamente utilizados em aplicações que exigem tais características. Vale comentar que a utilização dos motores de corrente contínua teve um grande incremento nos últimos anos, graças à eletrônica de potência. Fontes estáticas de corrente contínua com tiristores confiáveis, de baixo custo e manutenção simples, substituíram os grupos conversores rotativos. Com isso, motores de corrente contínua passaram a constituir alternativa mais atrativa em uma série de aplicações. Motores AC: A grande maioria das aplicações tem sua configuração mais econômica com a utilização de motores de indução de gaiola. Estima-se que 90% (em unidades) dos motores fabricados sejam deste tipo. Quando não há necessidade de ajuste e controle de velocidade e a potência é inferior a cerca de 500cv, sua utilização é amplamente dominante. Pode-se dizer que outros tipos de motores são utilizados somente quando alguma peculiaridade determina tal opção. OBS: Paradoxalmente ao que foi comentado no final da análise dos motores DC, o constante desenvolvimento da eletrônica de potência deverá levar a um progressivo abandono dos motores de corrente contínua. Isto porque fontes de tensão e freqüência controladas, alimentando motores de corrente alternada, principalmente os de indução de gaiola, já estão se transformando em opções mais atraentes, quanto ao ajuste e ao controle de velocidade. MOTOR DC Apresentaremos apenas um resumo do funcionamento do motor DC, já que este não é o objeto principal do nosso estudo. Achamos relevante falar deste motor, pois com ele introduziremos os conceitos de controle e feedback, que servirão de introdução aos motores de passo. O funcionamento básico do motor DC está fundamentado na Força de Lorentz aplicada em uma carga em movimento dentro de um campo magnético (F = qvB). Consideremos uma espira de corrente inserida num campo magnético criado por um ímã permanente, em que há uma corrente criada por uma bateria (fonte DC). De uma forma simplificada, a simples passagem desta corrente faz com que apareçam duas forças de sentidos contrários, aplicadas uma em cada lado da espira. Estas forças criam um torque que, obviamente, faz a espira girar, transformando a energia elétrica da corrente em energia cinética num eixo acoplado às espiras. A direção da rotação depende da polaridade da bateria e da direção das linhas de campo magnético criadas pelo ímã. Um motor real é composto de conjuntos múltiplos de espiras, dispostas de tal forma que as forças que agem em cada espira sejam somadas e produzam um torque significativo para uma possível aplicação. Os motores DC são utilizados, por exemplo, em aplicações como o posicionamento de um braço de robô. Mas eles apresentam uma grande desvantagem. Para que um computador dê um comando para que o braço se mova para uma determinada posição com precisão, é necessário um complicado circuito externo provido de sensores de posição, que informe ao computador que o braço já está na posição determinada (feedback). energizado apresenta torque estático nulo. Tendo assim baixa inércia de rotor não pode ser utilizado como carga inercial grande. - Imã Permanente = Apresenta um rotor de material alnico ou ferrite e é magnetizado radialmente devido a isto o torque estático não é nulo. - Híbridos = É uma mistura dos dois anteriores e apresenta rotor e estator multidentados . O rotor é de imã permanente e magnetizado axialmente. Apresenta grande precisão (3%), boa relação torque/tamanho e ângulos pequenos (0,9 e 1,8 graus). Para que o rotor avance um passo é necessário que a polaridade magnética de um dente do estator se alinha com a polaridade magnética oposta de um dente do rotor. 5. FUNCIONAMENTO BÁSICO DO MOTOR DE PASSO Normalmente os motores de passo são projetados com enrolamento de estator polifásico o que não foge muito dos demais motores. O número de pólos é determinado pelo passo angular desejado por pulsos de entrada. Os motores de passo têm alimentação externa. Conforme os pulsos na entrada do circuito de alimentação, este oferece correntes aos enrolamentos certos para fornecer o deslocamento desejado, como veremos em breve. Falaremos agora então, mais um pouco sobre motores com imã permanente. Além do número de fases do motor, existe outra subdivisão entre estes componentes, a sua polaridade. Motores de passo unipolares são caracterizados por possuírem um center-tape entre o enrolamento de suas bobinas. Normalmente utiliza--se este center-tape para alimentar o motor, que é controlado aterrando-se as extremidades dos enrolamentos. Abaixo segue uma figura ilustrativa onde podemos ver que tal motor possui duas bobinas e quatro fases. Diferentes dos unipolares, os motores bipolares exigem circuitos mais complexos. A grande vantagem em se usar os bipolares é prover maior torque, além de ter uma maior proporção entre tamanho e torque. Fisicamente os motores têm enrolamentos separados, sendo necessário uma polarização reversa durante a operação para o passo acontecer. Em seguida vemos uma ilustração do motor bipolar. Um motor de corrente contínua, quando alimentado, gira no mesmo sentido e com rotação constante, ou seja, para que estes motores funcionem, é necessário apenas estabelecer sua alimentação. Com o auxilio de circuitos externos de controle, estes motores de corrente contínua poderão inverter o sentido de rotação ou variar sua velocidade. Para que um motor de passo funcione, é necessário que sua alimentação seja feita de forma seqüencial e repetida. Não basta apenas ligar os fios do motor de passo a uma fonte de energia e sim ligá-los a um circuito que execute a seqüência requerida pelo motor. Existem três tipos básicos de movimentos o de passo inteiro e o de meio passo e o micropasso, tanto para o motor bipolar como para o unipolar. O de micropasso tem sua tecnologia não muito divulgada, e baseia-se no controle da corrente que flui por cada bobina multiplicado pelo numero de passos por revolução. Internamente, os motores têm seus enrolamentos similares a figura. A energização de uma e somente uma bobina de cada vez produz um pequeno deslocamento no rotor. Este deslocamento ocorre simplesmente pelo fato de o rotor ser magneticamente ativo e a energização das bobinas criar um campo magnético intenso que atua no sentido de se alinhar com as pás do rotor. Assim, polarizando de forma adequada os bobinas, podemos movimentar o rotor somente entre as bobinas (passo inteiro), ou entre as bobinas e alinhadas com as mesmas. Abaixo segue os movimentos executados. - Motor bipolar com passo inteiro - Motor bipolar com meio passo - Motor unipolar com passo inteiro - Motor unipolar com meio passo A solução encontrada: como a inércia da rede é igual a 2% da inércia do motor ela pode ser ignorada. A situação exigia um pequeno motor. Um micromotor de passo, que produzia um grande torque foi selecionado. Através da interface utilizando o protocolo IEEE-4888 controlada por um simples programa escrito em BASIC, o micromotor funcionou de forma satisfatória. Abaixo segue uma figura ilustrativa do problema. Aplicação #2 Esta segunda aplicação tem por objetivo mostrar o uso dos motores de passo, acoplado a engrenagens, na movimentação de telescópios. Comparadas às aplicações que utilizam apenas micromotores, as engrenagens apresentam baixa eficiência, desgaste e podem ser barulhentas. As engrenagens são justamente úteis, para romper grandes inércias, pois a inércia refletida de volta para o motor através das engrenagens é dividida pelo quadrado da inércia aplicada a elas. Desta maneira, grandes cargas inerciais podem ser movimentadas enquanto o rotor mantem uma carga menor. No caso descrito era necessário vasculhar fenômenos celestiais em velocidade baixa de 15º por hora e em velocidade alta em 15º por segundo. Assim, utilizando uma caixa de engrenagens que reduz de 30:1, 30 revoluções dadas pelo motor equivalem a uma rotação de 360º dada pelo telescópio, foi desenvolvido o projeto. A velocidade de tracking de 15º por hora corresponde 1.25 revoluções por hora, ou em torno de 9 passos por segundo para uma resolução de 25000 passos por revolução. A velocidade de 15º por segundo requere 1.25 rps para o mesmo motor. A lei do inverso do quadrado faz com que o motor sofra uma carga de 1/900 da inércia rotacional do telescópio. Na figura abaixo mostra o esquema do projeto. Aplicação #3 Veremos agora a aplicação do motor para rotacionar discos flexíveis antigos para finalizar. Estes discos possuíam uma alta velocidade de rotação, (em torno de 300rpm), alimentação de +12V, um passo de 1,8º ou 3,6º, e imã permanente. Utilizando uma lógica TTL que além comandar a alimentação das bobinas do motor na ordem certa para a correta utilização do mesmo, a lógica também controlava os processos de leitura e escrita. Tais discos continham também o bloco amplificador, se caracterizando como um circuito completo de manuseio do motor. Abaixo mostramos uma figura com os conectores de um antigo disco flexível Tandon TM100, de 51/4’. Para se acionar o motor do driver é preciso produzir os passo no pino 20, indicar a direção no pino 18 e ligar os pinos terras do circuito controlador com o do driver, através de qualquer pino ímpar. 7. CONTROLADORES PARA MOTOR DE PASSO Nesta etapa falaremos um pouco sobre circuitos que podem controlar os motores adequadamente. Destacamos que como as cores dos fios que levam energia as bobinas não são padronizados. Portanto não comentaremos sobre a ordem certa de polarização utilizando as cores dos fios. a primeira etapa, falaremos sobre o controle de um motor de passo diretamente pelo computador. Através da porta paralela visaremos controlar um motor de quatro fases e unipolar através da excitação por passo-inteiro. Pesquisando os drivers existentes, descobrimos o CI ULN2003 que é um 7bit 50V 500mA TTL-input NPN darlington driver, que funciona como amplificador. Obviamente toda a lógica deve ser exercida pelo computador inclusive a da ordem de excitação das bobinas. Abaixo segue o circuito elétrico mostrando a ligação entre o motor e a porta. Destaca-se que o diodo zener foi utilizado como intuito de absorver o campo eletromagnético reverso produzido pelo motor quando o mesmo é desligado. A inversão observada nos pinos de entrada 3 e 4 do ULN2003 são necessárias para manter a ordem certa de ativação das bobinas. Agora veremos o controle ser feito através de componentes discretos. Utilizando um contador Johnson CMOS que controla a etapa de potência não mostrada, podemos exercer um simples comando ao motor somente através dos clock. Este circuito tem a desvantagem de não exercer o controle da direção e observa-se que o mesmo executa o procedimento de passo inteiro. Abaixo segue o esquema elétrico.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved