(Parte 1 de 2)

UNIVERSIDADE ANHANGUERA - UNIDERP Engenharia Elétrica Com Ênfase Em Eletrônica

Eletromagnetismo 6º Semestre – Turma N60

ALÉCIO ALMEIDA LEITE RA: 139148 DOUGLAS M. ALVARENGA RA: 122569 JEAN CARLO R. AMARAL RA: 121641 JOHNNY MARTINS MARQUES RA: 122928 MARCELO SANTANA SILVA RA: 122389 VALDIR MELEIRO JUNIOR RA: 125301

CAMPO GRANDE/MS NOVEMBRO 2010

UNIVERSIDADE ANHANGUERA - UNIDERP Engenharia Elétrica Com Ênfase Em Eletrônica

Eletromagnetismo 6º Semestre – Turma N60

CAMPO GRANDE/MS NOVEMBRO 2010

Trabalho apresentado, como requisito para avaliação parcial na matéria de Eletromagnetismo, solicitado pelo Prof.º Saulo Gomes Moreira.

LISTA DE FIGURAS 3 OBJETIVO 4 1. CAPACITÂNCIA 5 1.1. Capacitor de Placas Paralelas 5 2. MOTORES DE INDUÇÃO MONOFÁSICOS 9 2.1. Caracterização. Comparação com motores trifásicos. 9 2.2. Partida de motores monofásicos 10 3. PRINCIPAIS TIPOS DE MOTORES DE INDUÇÃO MONOFÁSICOS 12 3.1. Motor de Fase Dividida (Split-Phase) 12 3.2. Motor com Capacitor de Partida 13 3.3. Motor com Capacitor Permanente 14 3.4. Motor com Dois Capacitores 15 3.5. Principais componentes Motores monofásico (IP21) 16 CONCLUSÃO 18 BIBLIOGRAFIA 19

Figura 01 - Capacitor de Placas Paralelas: elementos construtivos e símbolo 6 Figura 02 - Equação do Capacitor em função das características construtivas. 7 Figura 03 - Campo magnético pulsante B gerado por alimentação monofásica. 10 Figura 04 - Campo magnético girante B formado por alimentação bifásica. 1

Figura 05 - Circuito equivalente e característica conjugado X Velocidade de um motor de fase dividida. 12

Figura 06 – Motor WEG – Jet Pump Plus NEMA 42 – Split-Phase Aplicação: Bomba centrífuga 12

Figura 07 – Circuito equivalente e curva conjugado X rotação de um motor com capacitor de partida. 13

Figura 08 – Motor WEG – Uso geral IP21 – Capacitor de partida – Aplicação: Geral. 13

Figura 09 - Circuito equivalente e curva conjugado X rotação de um motor com capacitor permanente. 14

Figura 10 – Motor WEG – Tanquinho N42 – Capacitor permanente Aplicação: Maquina de lavar roupa. 14

Figura 1 - Circuito equivalente e curva conjugado X rotação de um motor com dois capacitores. 15

Figura 12 – Motor WEG – Blindada IP55 – Capacitor Dois Valores – Aplicação: Rural. 15 Figura 13 – composição de um motor monofásico 17

O obejtivo do presente trabalho e analisar o emprego de capacitores em partidas de motores monofásico tendo em vista que esses motores operam em regime de trabalho diferente dos motores trifásicos, com maior variação da tensão de alimentação, com fator de carga diferente, e na sua maioria são empregados em uso específico ou definido.

1. CAPACITÂNCIA

Conceito

A capacitância ou capacidade é a grandeza elétrica de um capacitor, determinada pela quantidade de energia elétrica que pode ser armazenada em si por uma determinada tensão e pela quantidade de corrente alternada que o atravessa numa determinada freqüência. Sua unidade é dada em farad (símbolo F), que é o valor que deixará passar uma corrente de 1 ampére quando a tensão estiver variando na razão de 1 volt por segundo. Assim, pode-se definir a expressão da capacitância com:

Para um determinado material, a sua capacitância depende somente de suas dimensões. Quanto maior for o material, maior capacitância ele terá.

A Capacitância expressa a habilidade de um dispositivo armazenar cargas elétricas.

1.1. Capacitor de Placas Paralelas

O Capacitor de Placas Paralelas é composto por duas placas condutoras paralelas ou eletrodos (também chamadas de Armaduras) separadas por um material dielétrico de espessura uniforme. As placas condutoras podem ser de qualquer material bom condutor de eletricidade. É comum o uso do alumínio e do cobre. O dielétrico deve ser um material mau condutor (um isolante). É comum o uso de materiais plásticos e cerâmicos e de óxidos isolantes.

O capacitor elementar (básico) de placas planas e paralelas e sua simbologia, usada nos diagramas de circuitos eletrônicos, são mostrados na Figura 01.

C – Capacitância (Coulomb /Volt ou Farad) q – quantidade de carga (Coulomb)

V – Potencial Eletrostático (Volt) V

Figura 01 - Capacitor de Placas Paralelas: elementos construtivos e símbolo

O Capacitor armazena energia no campo elétrico porque este forma um bipolo elétrico que estabelece uma diferença de potencial (tensão) entre as placas carregadas.

Permissividade Elétrica (Є) e Constante Dielétrica (K)

Permissividade Elétrica é a capacidade de um material dielétrico polarizar-se quando sob a ação de um Campo Elétrico.

Quanto maior a área das placas do capacitor, maior quantidade de elétrons–livres podemos obter para serem deslocados para o positivo da bateria, como vimos na figura 3. Portanto, mais carga será armazenada e será a capacitância.

Quanto maior a distância entre as placas, maior será a camada dielétrica, menor será a influência de uma placa sobre a outra, menor a quantidade de carga armazenada e, portanto menor a capacitância.

Quanto maior a constante dielétrica, mais polarizável é o dielétrico e, portanto, mais carga será possível armazenar nas placas até que se estabeleça o equilíbrio de tensões entre a fonte e o capacitor.

Assim, a capacitância de um capacitor depende diretamente da área das placas e do tipo de material dielétrico usado (constante dielétrica K) e inversamente da distância entre as placas.

A expressão da capacitância é dada em função dos parâmetros indicados na Figura 02. Notase a presença da constante 8,85 x 10-12 (a permissividade do vácuo).

Figura 02 - Equação do Capacitor em função das características construtivas.

2. MOTORES DE INDUÇÃO MONOFÁSICOS

2.1. Caracterização. Comparação com motores trifásicos.

Construtivamente, os motores monofásicos são semelhantes aos trifásicos, já estudados anteriormente, com a diferença de possuírem um único enrolamento de fase.

Sua grande vantagem é a de poderem ser ligados à tensão de fase das redes elétricas, normalmente disponíveis em residências e pequenas propriedades rurais - ao contrário do que sucede com as redes trifásicas. Em contrapartida, possuem o inconveniente de serem incapazes de partir sem a ajuda de um circuito auxiliar, o que não ocorre com os motores trifásicos.

Em uma comparação com motores trifásicos, os monofásicos apresentam muitas desvantagens:

Apresentam maiores volume e peso para potências e velocidades iguais (em média 4 vezes); em razão disto, seu custo é também mais elevado que os de motores trifásicos de mesma potência e velocidade;

Necessitam de manutenção mais apurada devido ao circuito de partida e seus acessórios;

Apresentam rendimento e fator de potência menores para a mesma potência, em função disso apresentam maior consumo de energia (em média 20% a mais);

Possuem menor conjugado de partida;

São difíceis de encontrar no comércio para potências mais elevadas (acima de 10 cv).

2.2. Partida de motores monofásicos

(Parte 1 de 2)

Comentários