Energia solar - princípios e aplicações

Energia solar - princípios e aplicações

(Parte 3 de 4)

Para se utilizar o silício na indústria eletrônica além do alto grau de pureza, o material deve ter a estrutura monocristalina e baixa densidade de defeitos na rede. O processo mais utilizado para se chegar as qualificações desejadas é chamado “processo Czochralski”. O silício é fundido juntamente com uma pequena quantidade de dopante, normalmente o boro que é do tipo p. Com um fragmento do cristal devidamente orientada e sob rígido controle de temperatura, vaise extraindo do material fundido um grande cilindro de silício monocristalino levemente dopado.

Este cilindro obtido é cortado em fatias finas de aproximadamente 300µm.

Após o corte e limpezas de impurezas das fatias, deve-se introduzir impurezas do tipo N de forma a obter a junção. Este processo é feito através da difusão controlada onde as fatias de

Figura 4.3 - Célula de silício monocristalino

ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES - 15 silício são expostas a vapor de fósforo em um forno onde a temperatura varia entre 800 a 1000oC.

Dentre as células fotovoltaicas que utilizam o silício como material base, as monocristalinas são, em geral, as que apresentam as maiores eficiências. As fotocélulas comerciais obtidas com o processo descrito atingem uma eficiência de até 15% podendo chegar em 18% em células feitas em laboratórios.

4.2.2. Silício Policristalino

As células de silício policristalino são mais baratas que as de silício monocristalino por exigirem um processo de preparação das células menos rigoroso. A eficiência, no entanto, cai um pouco em comparação as células de silício monocristalino.

O processo de pureza do silício utilizada na produção das células de silício policristalino é similar ao processo do Si monocristalino, o que permite obtenção de níveis de eficiência compatíveis. Basicamente, as técnicas de fabricação de células policristalinas são as mesmas na fabricação das células monocristalinas, porém com menores rigores de controle. Podem ser preparadas pelo corte de um lingote, de fitas ou depositando um filme num substrato, tanto por transporte de vapor como por imersão. Nestes dois últimos casos só o silício policristalino pode ser obtido. Cada técnica produz cristais com características específicas, incluindo tamanho, morfologia e concentração de impurezas. Ao longo dos anos, o processo de fabricação tem alcançado eficiência máxima de 12,5% em escalas industriais.

4.2.3. Silício Amorfo

Uma célula de silício amorfo difere das demais estruturas cristalinas por apresentar alto grau de desordem na estrutura dos átomos. A utilização de silício amorfo para uso em fotocélulas tem mostrado grandes vantagens tanto nas propriedades elétricas quanto no processo de fabricação. Por apresentar uma absorção da radiação solar na faixa do visível e podendo ser fabricado mediante deposição de diversos tipos de substratos, o silício amorfo vem se mostrando uma forte tecnologia para sistemas fotovoltaicos de baixo custo. Mesmo apresentando um custo reduzido na produção, o uso de silício amorfo apresenta duas desvantagens: a primeira é a baixa eficiência de conversão comparada às células mono e policristalinas de silício; em segundo, as células são afetadas por um processo de degradação logo nos primeiros meses de operação, reduzindo assim a eficiência ao longo da vida útil. Por outro lado, o silício amorfo apresenta vantagens que compensam as deficiências acima citados, são elas:

Figura 4.4 - Célula de silício policristalino

16 - ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES • baixo consumo de energia na produção.

ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES - 17 5. Módulos Fotovoltaicos

Pela baixa tensão e corrente de saída em uma célula fotovoltaica, agrupam-se várias células formando um módulo. O arranjo das células nos módulos podem ser feito conectando-as em série ou em paralelo.

Ao conectar as células em paralelo, soma-se as correntes de cada módulo e a tensão do módulo é exatamente a tensão da célula. A corrente produzida pelo efeito fotovoltaico é contínua. Pelas características típicas das células (corrente máxima por volta de 3A e tensão muito baixa, em torno de 0,7V) este arranjo não é utilizado salvo em condições muito especiais.

Figura 5.1 - Conexão de células em paralelo

A conexão mais comum de células fotovoltaicas em módulos é o arrajo em série. Este consiste em agrupar o maior número de células em série onde soma-se a tensão de cada célula chegando a um valor final de 12V o que possibilita a carga de acumuladores (baterias) que também funcionam na faixa dos 12V.

Figura 5.2 - Arranjo das células em série

Quando uma célula fotovoltaica dentro de um módulo, por algum motivo, estiver encoberta a potência de saída do múdulo cairá drasticamente que, por estar ligada em série, comprometerá todo o funcionamento das demais células no módulo. Para que todo a corrente de um módulo não seja limitado por uma célula de pior desempenho (o caso de estar encoberta), usa-se um diodo de passo ou de “bypass”. Este diodo serve como um caminho alternativo para a corrente

18 - ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES e limita a dissipação de calor na célula defeituosa. Geralmente o uso do diodo bypass é feito em grupamentos de células o que, torna muito mais barato comparado ao custo de se conectar um diodo em cada célula.

Figura 5.3 - Possível ligação para um diodo bypass entre células

Figura 5.4 - Diodo de bloqueio

Um outro problema que pode acontecer é quando surge um corrente negativa fluindo pelas células ou seja, ao invés de gerar corrente, o módulo passa a receber muito mais do que produz. Esta corrente pode causar queda na eficiência das células e, em caso mais drástico, a célula pode ser desconecta do arranjo causando assim a perda total do fluxo de energia do módulo. Para evitar esses problemas, usa-se um diodo de bloqueio impedindo assim correntes reversas que podem ocorrer caso liguem o módulo diretamente em um acumulador ou bateria.

5.1. Características elétricas dos módulos fotovoltaicos

Geralmente, a potência dos módulos é dada pela potência de pico. Tão necessário quanto este parâmetro, exite outras características elétricos que melhor caracteria a funcionabilidade do módulo. As principais características elétricas dos modúlos fotovoltaicos são as seguintes:

• Potência Máxima (Pm)

ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES - 19

A condição padrão para se obter as curvas características dos módulos é definida para radiação de 1000W/m2 (radiação recebida na superfície da Terra em dia claro, ao meio dia), e temperatura de 25ºC na célula (a eficiência da célula é reduzida com o aumento da temperatura).

Figura 5.5 - Curva característica IxV mostrando acorrente Isc e a tensão VocFigura 5.6 - Curva típica de potência versus tensão

Figura 5.7 - Parâmetros de potência máxima 5.2. Fatores que afetam as características elétricas dos módulos

20 - ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES

Os principais fatores que influenciam nas características elétricas de um painel é a Intensidade Luminosa e a Temperatura das Células. A corrente gerada nos módulos aumenta linearmente com o aumento da Intensidade luminosa. Por outro lado, o aumento da temperatura na célula faz com que a eficiência do módulo caia abaixando assim os pontos de operação para potência máxima gerada.

Figura 5.8 - Efeito causado pela variação deintensidade luminosa.Figura 5.9 - Efeito causado pela temperatura na célula.

5.3. Alguns modelos de módulos fotovoltaicos

Figura 5.10 – Módulo fabricado pelaempresa Kyosera. Figura 5.1 – Módulo fabricado pela empresa

Siemens.

ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES - 21 6. Componentes de um sistema fotovoltaico

Um sistema fotovoltaico pode ser classificado em três categorias distintas: sistemas isolados, híbridos e conectados a rede. Os sistemas obedecem a uma configuração básica onde o sistema deverá ter uma unidade de controle de potência e também uma unidade de armazenamento.

Figura 6.1 - Configuração básica de um sistema fotovoltaico.

6.1. Sistemas Isolados

Sistemas isolados, em geral, utiliza-se alguma forma de armazenamento de energia. Este armazenamento pode ser feito através de baterias, quando se deseja utilizar aparelhos elétricos ou armazena-se na forma de energia gravitacional quando se bombeia água para tanques em sistemas de abastecimento. Alguns sistemas isolados não necessitam de armazenamento, o que é o caso da irrigação onde toda a água bombeada é diretamente consumida ou estocadas em reservatórios.

Em sistemas que necessitam de armazenamento de energia em baterias, usa-se um dispositivo para controlar a carga e a descaga na bateria. O “controlador de carga” tem como principal função não deixar que haja danos na bateria por sobrecarga ou descarga profunda. O controlador de carga é usado em sistemas pequenos onde os aparelhos utilizados são de baixa tensão e corrente contínua (C).

Para alimentação de equipamentos de corrente alternada (CA) é necessário um inversor. Este dispositivo geralmente incorpora um seguidor de ponto de máxima potência necessário para otimização da potência final produzida. Este sistema é usado quando se deseja mais conforto na utilização de eletrodomésticos convencionais.

2 - ENERGIA SOLAR - PRINCÍPIOS E APLICAÇÕES

Figura 6.2 - Diagrama de sistemas fotovoltaicos em função da carga utilizada.

6.2. Sistemas Híbridos

Sistemas híbridos são aqueles que, desconectado da rede convencional, apresenta várias fontes de geração de energia como por exemplo: turbinas eólicas, geração diesel, módulos fotovoltaicos entre outras. A utilização de vários formas de geração de energia elétrica torna-se complexo na necessidade de otimização do uso das energias. É necessário um controle de todas as fontes para que haja máxima eficiência na entrega da energia para o usuário.

Figura 6.3 - Exemplo de sistema híbrido.

Em geral, os sistemas híbridos são empregados para sistemas de médio a grande porte vindo a atender um número maior de usuários. Por trabalhar com cargas de corrente contínua, o

(Parte 3 de 4)

Comentários