Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resumo de Bombas, Resumos de Engenharia Mecânica

- - - - - - -

Tipologia: Resumos

Antes de 2010

Compartilhado em 08/12/2007

fabio-morais-10
fabio-morais-10 🇧🇷

4

(3)

15 documentos

1 / 23

Documentos relacionados


Pré-visualização parcial do texto

Baixe Resumo de Bombas e outras Resumos em PDF para Engenharia Mecânica, somente na Docsity! ESCOLHA DE BOMBAS CENTRÍFUGAS Carlos Rogério de Mello1 Tadayuki Yanagi Jr.2 1. Introdução Com a evolução dos processos produtivos agrícolas, demonstrada principalmente pela presença cada vez maior da irrigação e a crescente de- manda por água, acompanhada pela sua escassez (distâncias cada vez maio- res), há necessidade de projetar instalações que possam proporcionar forne- cimento de água com maior rapidez e eficiência. Sendo assim, a presença de bombas hidráulicas num projeto de irrigação ou abastecimento de água para pequenas comunidades, é de suma importância, e o conhecimento das partes fundamentais ao seu bom funcionamento merece a devida atenção e cuidado. Bombas hidráulicas são máquinas de fluxo, cuja função é fornecer energia para a água, a fim de recalcá-la (elevá-la), através da conversão de energia mecânica de seu rotor proveniente de um motor a combustão ou de um motor elétrico. Desta forma, as bombas hidráulicas são tidas como má- quinas hidráulicas geradoras. O objetivo deste trabalho é transmitir aos profissionais da área agrí- cola algum conhecimento básico e prático sobre instalações elevatórias, pos- sibilitando, desta forma, o acompanhamento e/ou desenvolvimento de pro- jetos simples e eficientes de bombeamento, que é algo extremamente impor- tante dentro da hidráulica agrícola, mas que pode se tornar penoso, caso não seja bem estruturado. 1. Engenheiro Agrícola, R. Cristiano Silva, 140. Lavras, MG, 37.200-000. 2. Eng. Agríc., M.Sc., Professor do Departamento de Ciências Exatas da UNIVER- SIDADE FEDERAL DE LAVRAS. Caixa Postal 37, Campus Universitário, La- vras, MG, 37.200-000. 6 2. Partes Principais de uma Instalação de Bombeamento A Figura 1 ilustra as partes principais de uma instalação de bombeamento Legenda: 1- Casa de Bombas RE - Redução Excêntrica M – Motor de acionamento CL - Curva de 90o B – Bomba 4 - Linha de Recalque 2 – Poço (fonte) VR - Válvula de retenção 3 – Linha de Sucção R - Registro VPC - Válvula de pé com crivo C - Joelhos 5 - Reservatório FIGURA 1- Representação das partes de uma instalação. 9 A altura manométrica é descrita pela seguinte equação: Hm HG = + hf (1) sendo Hm= altura manométrica da instalação (m); HG= altura geométrica (m); hf= perda de carga total (m) . FIGURA 3 - Representação das alturas de sucção e recalque em uma insta- lação. 10 4.2. Perda de Carga Perdas de carga referem-se à energia perdida pela água no seu deslo- camento por alguma tubulação. Essa perda de energia é provocada por atri- tos entre a água e as paredes da tubulação, devido à rugosidade da mesma. Portanto, ao projetar uma estação de bombeamento, deve-se considerar essa perda de energia. São classificadas em 2 tipos: - Perdas de carga contínuas: São aquelas relativas às perdas ao longo de uma tubulação, sendo função do comprimento, material e diâmetro. - Perdas de carga acidentais: São aquelas proporcionadas por ele- mentos que compõem a tubulação, exceto a tubulação propriamente dita. Portanto, são perdas de energia observadas em peças como, curvas de 90o ou 45o, registros, válvulas, luvas, reduções e ampliações. Para o cálculo da perda de carga total, normalmente trabalha-se com o método dos comprimentos equivalentes, ou seja, através de tabelas, con- vertendo-se a perda acidental em perda de carga equivalente a um determi- nado comprimento de tubulação. Isso significa que, ficticiamente, seria como substituir, por exemplo, uma curva de 90o por um comprimento de tubo, e a perda de carga contínua nesse comprimento equivale à perda localizada na curva. Matematicamente, define-se perda de carga como sendo: hf J Le1 2− = ⋅ (2) sendo hf1-2 = perda de carga entre os pontos 1 e 2 de uma instalação (m); J = perda de carga unitária (m/m); Le = comprimento equivalente da tubulação (Tabela 1). 11 Tabela 1 14 5.1. Curvas Características da Bomba Quando se trabalha com estas curvas, têm-se graficamente as variá- veis altura manométrica (Hm), rendimento (η) e NPSHrequerido em função da vazão. As curvas de rendimento e altura manométrica podem ser criadas em gráficos separados ou em um único gráfico, dependendo do fabricante. Essas três variáveis caracterizam as condições de funcionamento de uma bomba. Tais gráficos são plotados pelos fabricantes e publicados na forma de catálo- gos, utilizando-se resultados de testes realizados em laboratório. Para bom- bas centrífugas, estes gráficos possuem a seguinte forma: Vazão A ltu ra m an om ét ri ca Vazão R en di m en to Vazão N PS H r eq ue ri do FIGURA 5- Curvas características de bombas centrífugas. 15 5.2. Curva do Sistema A curva do sistema, também conhecida como curva da tubulação, é uma curva traçada no gráfico HmxQ e sua importância está na determinação do ponto de trabalho da bomba, pois esse é obtido no encontro dessa curva com a curva característica da bomba. Para traçá-la, é necessário retornar à definição de altura manométrica, fazendo com que a equação 1 tenha a forma Hm=f(Q), através dos passos descritos a seguir. Assim, hf pode também ser definida pela equação: hf k Q= ⋅ 1 852, (4) sendo: k Le C D = ⋅ ⋅ ⋅ ⋅       4 0 355 2,63 1 852 , , π (5) ou seja, basta desmembrar a vazão da equação de Hazen-Willians da perda de carga unitária e multiplicar o comprimento equivalente pela outra parte da equação. Desta forma, a equação Hm= f(Q), é a seguinte: Hm HG = ⋅+ K Q1,852 (6) Em um projeto de irrigação ou abastecimento, tem-se o conheci- mento da vazão necessária e da altura manométrica (altura geométrica mais perdas de carga); a altura geométrica é a soma da altura de sucção com a altura de recalque. Assim, basta substituir esses pontos conhecidos, na equa- ção acima, para encontrar k, completando a equação. Definida a equação, constrói-se a curva do sistema, criando uma ta- bela de valores de vazão pela altura manométrica. Em seguida, plota-se os valores no gráfico HmxQ e unindo-os, tem-se a curva do sistema. 16 Através do ponto de intersecção entre a curva do sistema e a curva da bomba, encontra-se o ponto de trabalho da bomba que, na maioria das vezes, é diferente do ponto proveniente do projeto. A solução para este pro- blema é apresentada em um exemplo de projeto de uma instalação no item 8. 6. CAVITAÇÃO Cavitação é um fenômeno semelhante à ebulição, que pode ocorrer na água durante um processo de bombeamento, provocando estragos, princi- palmente no rotor e palhetas e é identificado por ruídos e vibrações. Para evitar tal fenômeno, devem-se analisar o NPSHrequerido e o NPSHdisponível. 7. NPSH requerido e NPSH disponível O NPSH (Net Positive Succion Head) disponível refere-se à "carga energética líquida e disponível na instalação" para permitir a sucção do flui- do, ou seja, diz respeito às grandezas físicas associadas à instalação e ao flui- do. Esse NPSH deve ser estudado pelo projetista da instalação, através da seguinte expressão: ( )NPSH H H H Hdisponível atm S V S= − ± − + ∆ (7) Sendo: NPSHdisponível = energia disponível na instalação para sucção, em m; Hatm = pressão atmosférica local (Tabela 3); Hs = altura de sucção; é negativa quando a bomba está afogada, e positiva quando estiver acima do nível d'água (m); Hv = pressão de vapor do fluido em função da sua temperatura (Tabela 4); ∆Hs = perda de carga total na linha de sucção (m). 19 8. Exemplo de dimensionamento de uma instalação de bombeamento Dimensionar uma instalação de bombeamento, para atender a deman- da de 200m3/h de vazão durante 24 hs/dia, recalcando a uma altura de 24m. A composição das linhas de sucção e recalque é a seguinte: Quant. Sucção Quant. Recalque 01 Válvula de pé com crivo 01 Válvula de retenção 01 curva de 90o 03 curvas de 90o 6 m tubulação de sucção (Ls) 02 curvas de 45o 2 m altura de sucção (Hs) 01 registro de gaveta 01 saída da canalização 1000 m tubulação de recalque (Lr) 24 m altura de recalque (Hr) Dimensionamento a) Dimensionamento da linha O critério a ser utilizado para escolha de diâmetros de tubulações é o critério de velocidade econômica, por ser simples e eficiente, e segundo muitos autores, seu valor deve variar de 0,5 a 2,0 m/s. Para determinar o diâmetro a partir deste critério, procede-se da seguinte forma, utilizando-se a relação abaixo: 20 V Q A = (8) em que V é a velocidade (m/s); Q é a vazão (m3/s); A é a área da seção do tubo, sendo determinada por: A D = ⋅π 2 4 (9) Substituindo a velocidade por um valor entre 0,5 e 2,0m/s, isola-se matematicamente a expressão 9 em função do diâmetro. A partir do valor calculado, usa-se o diâmetro comercial imediatamente acima para a tubula- ção de sucção, e o diâmetro comercial imediatamente abaixo no recalque. Sendo assim, adotando-se uma velocidade média de 1,5m/s, tem-se, a partir da equação 8: 1 5 0,0556 , = ⇒ A A = 0,0371m2 . Isolando D na equação 9, obtém-se: ( ) 0,0371 3 14 4 2 = ⋅ ⇒ , D D = 0,217 m= 217mm. Valor comercial acima = 250 mm ⇒ diâmetro da sucção (Tabela 1). Valor comercial abaixo= 200mm ⇒ diâmetro do recalque (Tabela 1). c) Escolha da Bomba • Traçado da curva do sistema • Cálculo das perdas de carga 21 Sucção (Diâmetro = 250 mm) Comprimento daTubulação (Ls) 6m onexões Comprimento equivalente (Lequivalente) válvula de pé com crivo 65m curva de 90o 4,1m Comprimento total: 69,1m Comprimento equivalente total: 75,1m Utilizando-se a equação de Hazen-Williams, obtém-se a perda de carga na linha de sucção: C= 130 (Tabela 2) hf J L= ⋅ J = ⋅ ⋅ ⋅ ⋅         = × 4 0 0556 0 355 130 0 252 63 1 852 , , , , , π 5,26 10 -3 m/m hfsucção = 5,25x10 -3 . 75,1 = 0,4m 24 No gráfico (HmxQ) da curva característica, traça-se a curva do sis- tema, criando uma tabela com valores de vazão, encontrando-se a altura ma- nométrica correspondente: Q(m3/h) Hm (m) 0 26 50 27,2 100 30,6 150 35,7 200 42,5 250 50,9 300 61,0 Através da Figura 6, observa-se que o ponto de trabalho da bomba é: Q=215 m3/h e Hm= 44 m. O ponto de projeto é: Q= 200m3/h e Hm=42,5m. Observa-se que há uma ligeira diferença, mas que pode ser contornada com um dos três procedimentos abaixo: - Controlar a vazão com um Medidor de Vazão (válvula ou registro), reduzindo-a à quantidade desejada. Essa prática, apesar de mais usada, im- plica na introdução de perda de carga, o que reduziria a eficiência energética da instalação, havendo um consumo de energia além do necessário para este bombeamento. - Alterar o diâmetro do rotor, mantendo-se a rotação constante. - Alterar a rotação do rotor, mantendo-se o diâmetro constante. OBS.: Essas duas últimas práticas devem ser priorizadas. 25 0 50 100 150 200 250 300 350 Vazão (m3/h) 0 10 20 30 40 50 60 70 80 A lt ur a m an om ét ri ca ( m ) Bomba Mark-RO 16 Curva-Sistema Rend. 75% Rend. 80% (a) 0 50 100 150 200 250 300 350 400 Vazão (m3/h) 0 1 2 3 4 5 6 N P SH r eq ue ri do NPSH requerido (b) FIGURA 6 - Curvas caracteristicas da bomba Mark-Peerless, modelo RO 16 e curva do sistema usadas no exemplo de dimensionamento de uma instala- ção de bombeamento. 26 • Para o cálculo da potência necessária, utiliza-se a seguinte fórmula: N Q H= ⋅ ⋅ ⋅     γ η75 (11) sendo: N = potência (CV); γ = peso específico da água (1000 kg/m3); Q = vazão (m3/s); H = altura manométrica (m); η = rendimento (decimal). O rendimento é obtido através da curva característica (figura 6a), na qual toma-se o ponto de trabalho (Q,H), e aproximadamente obtém-se um rendi- mento de 77%. Aplicando-se a fórmula para o cálculo da potência, tem-se: ( )N = ⋅ ⋅ ⋅ =1000 0 0555 42 5 75 0 77 40 9, , , , CV O motor comercial que satisfaz esse valor é de 45 CV, ou seja, o primeiro motor com potência igual ou maior ao valor calculado pela fórmula acima. • Cálculo do NPSHdisponível e do NPSHrequerido O NPSHrequerido deve ser obtido diretamente da curva caracte- rística correspondente, obtendo-o da mesma forma que no rendimento, logo: NPSHrequerido = 0,8m O NPSHdisponível é calculado a partir da fórmula abaixo, saben- do-se que a pressão correspondente à altitude do local (900 m) é de 9,22x103 kg/m2 (0,922 atm) e a temperatura do fluido bombeado é de 20oC.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved