Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Instalações Elétricas Residenciais - Apostilas - Engenharia Elétrica Part1, Notas de estudo de Eletrotécnica

Apostilas de Engenharia Elétrica sobre o estudo das Instalações Elétricas Residenciais, Evolução da Eletricidade, Tensão e Corrente Elétrica, Resistência Elétrica – Lei de Ohm, Corrente Contínua e Corrente Alternada, Potência Elétrica, Cálculo da Energia Elétrica.

Tipologia: Notas de estudo

2013

Compartilhado em 10/06/2013

Salome_di_Bahia
Salome_di_Bahia 🇧🇷

4.5

(389)

318 documentos

1 / 73

Documentos relacionados


Pré-visualização parcial do texto

Baixe Instalações Elétricas Residenciais - Apostilas - Engenharia Elétrica Part1 e outras Notas de estudo em PDF para Eletrotécnica, somente na Docsity! 1 Manual de Instalações Elétricas Residenciais INTRODUÇÃO O “Manual de Instalações Elétricas Residenciais” – RC/UE - 001/2003, aborda os procedimentos e normas técnicas que devem ser utilizados na execução de obras novas e em reformas de instalações elétricas residenciais. Este Manual é destinado à execução/reforma de instalação elétrica interna de uma única casa residencial. Quando se tratar de mais de uma residência em um mesmo terreno – um prédio, por exemplo, poderão ser necessárias mais informações técnicas sobre o assunto. Neste caso, é recomendado consultar as Normas vigentes afins da CEMIG e da ABNT – Associação Brasileira de Normas Técnicas, além de literaturas técnicas especializadas. O assunto sobre as instalações elétricas residenciais, não foi esgotado neste Manual. Procurou-se tratar de uma maneira prática, os procedimentos para a execução de instalações elétricas residenciais adequadas, seguras e mais eficientes quanto ao uso de energia elétrica. Este Manual é a atualização da edição CEMIG 02111 – CM/CE-199 – Manual de Instalações Residenciais – janeiro/98, em dezembro de 2003. 2 Manual de Instalações Elétricas Residenciais ÍNDICE Página CAPÍTULO 1 - NOÇÕES GERAIS SOBRE A ELETRICIDADE 1.1 Energia 7 1.1.1 Energia Elétrica 7 1.2 Evolução da Eletricidade 9 1.3 Tensão e Corrente Elétrica 11 1.4 Resistência Elétrica – Lei de Ohm 13 1.5 Corrente Contínua e Corrente Alternada 13 1.6 Potência Elétrica 14 1.7 Cálculo da Energia Elétrica 15 1.8 Cálculos de Grandezas Elétricas – I, R e E 15 1.9 Unidades de Medidas 16 1.10 Circuitos Série e Circuito Paralelo 18 1.10.1 Circuito Série 18 1.10.2 Circuito Paralelo 19 1.11 Circuitos em Corrente Alternada 21 1.11.1 Circuito Monofásico 21 1.11.2 Circuito Trifásico 22 1.11.3 Potência em Corrente Alternada (CA) 23 1.12 Fator de Potência 27 1.13 Aparelhos para testar e Aparelhos para medir grandezas Elétricas 29 1.13.1 Aparelhos de Teste 29 1.13.1.1 Lâmpada Neon 30 1.13.1.2 Teste com uma Lâmpada 30 1.13.1.3 Lâmpada em “Série” 31 1.13.2 Aparelhos de Medição 31 1.13.2.1 Amperímetro e Voltímetro 32 1.13.2.2 Wattímetro 32 1.13.2.3 Ohmímetro 32 1.13.2.4 Alicate Volt-Amperímetro 33 1.13.2.5 Medidor de Energia Elétrica 33 1.14 Informações sobre a CEMIG, ANEEL, PROCEL, ABNT e INMETRO 34 1.14.1 Companhia Energética de Minas Gerais – CEMIG 35 1.14.2 Agência Nacional de Energia Elétrica – ANEEL 37 1.14.3 Programa Nacional de Conservação de Energia Elétrica – PROCEL 37 1.14.4 Associação Brasileira de Normas Técnicas – ABNT 39 1.14.5 Instituto Nacional de Metrologia, Normalização e Qualidade Industrial – INMETRO 41 5 Manual de Instalações Elétricas Residenciais Página CAPÍTULO 5 - PROJETO DAS INSTALAÇÕES ELÉTRICAS 5.1 Planejamento de uma Instalação Elétrica 123 5.2 Traçado de um Projeto Elétrico 124 5.3 Elaboração de um Projeto Elétrico 125 5.3.1 Determinação das Cargas da Instalação Elétrica 130 5.3.1.1 Outras Cargas Elétricas 137 5.3.2 Divisão dos Circuitos de uma Instalação Elétrica 140 5.3.3 Circuitos de Tomadas de Uso Geral e os de Iluminação 143 5.3.3.1 Circuitos de Tomadas de Uso Geral 145 5.3.3.2 Circuitos de Iluminação 145 5.3.4 Instalação de Eletrodutos 145 5.3.5 Dimensionamento da Seção dos Condutores 147 5.3.5.1 Cálculo de Momentos Elétricos e Seção de Condutores 148 5.3.6 Equilíbrio das Fases do Circuito Elétrico 165 5.3.7 Dimensionamento da Proteção 166 5.3.7.1 Dimensionamento dos Disjuntores Termomagnéticos 166 5.3.7.2 Dimensionamento dos Dispositivos Diferencial Residual 167 5.3.7.3 Dimensionamento da Proteção Contra Sobretensões Transitórias 169 5.3.7.4 Proteção Contra Falta de Fase e Sub/Sobretensão 170 5.3.7.5 Acondicionamento e Identificação dos Dispositivos de Proteção e de Segurança 170 5.3.7.6 Proteções Complementares 172 5.3.8 Dimensionamento dos Eletrodutos 173 5.3.9 Apresentação do Projeto Elétrico 176 CAPÍTULO 6 - EXECUÇÃO DO PROJETO ELÉTRICO 6.1 Materiais e Componentes da Instalação Elétrica 180 6.2 Execução do Projeto Elétrico 180 6.3 Requisitos Estabelecidos pela Norma NBR 5410/97 181 6.4 Recomendações Gerais sobre as Instalações Elétricas 183 6.5 Verificação Final 185 6.6 Aumento de Carga e Reformas nas Instalações Elétricas Internas 185 6.7 Bomba de Água com Chave Bóia 186 6.8 Instalações de Linhas Aéreas 187 6 Manual de Instalações Elétricas Residenciais Página CAPÍTULO 7 - ECONOMIA DE ENERGIA ELÉTRICA 7.1 Consumo de Energia Elétrica em uma Residência 189 7.2 Iluminação 190 7.2.1 Conceitos sobre Grandezas Fotométricas 190 7.2.2 Tipos de Lâmpadas mais Usuais em Residências 191 7.2.3 Iluminação Adequada 196 7.2.4 Problemas em Lâmpadas 197 7.2.5 Recomendações Úteis para Utilização Adequada das Lâmpadas 198 7.3 Economia de Energia Elétrica em Eletrodomésticos 199 7.3.1 Geladeira e o Freezer 199 7.3.2 Aquecimento de Água 200 7.3.2.1 Chuveiro Elétrico 200 7.3.2.2 Aquecedor Elétrico de Água 201 7.3.2.3 Torneira Elétrica 201 7.3.2.4 Aquecimento de Água Através de Energia Solar 201 7.3.3 Televisor 202 7.3.4 Ferro Elétrico 202 7.3.5 Condicionador de Ar 202 7.3.6 Máquina de Lavar Louça 203 7.3.7 Máquina de Lavar Roupa 203 7.3.8 Secadora de Roupa 203 7.4 Horário de Ponta ou de “Pico” 203 7.5 Leitura e Controle do Consumo de Energia Elétrica 204 7.5.1 Estimativa do Consumo de Energia Elétrica 205 7.6 Dicas de Segurança 206 8 - ANEXOS Anexo 1 Conversão de Unidades 207 Anexo 2 Fórmulas Práticas 208 Anexo 3 Portaria INMETRO N.o 27 de 18.02.2000 209 Anexo 4 Endereços Úteis 214 Anexo 5 Características dos Condutores Isolados em PVC/70ºC 215 Anexo 6 Potência Média de Aparelhos Elétricos 216 Anexo 7 Características de Motores Elétricos 217 7 Manual de Instalações Elétricas Residenciais CAP ÍTULO 1 NOÇÕES GERAIS SOBRE A ELETRICIDADE São abordados neste Capítulo diversos aspectos sobre a eletricidade, de uma forma simplificada, buscando oferecer uma visão geral sobre o assunto. Para maiores informações, deve-se procurar uma literatura técnica especializada. Também são apresentadas informações, de uma maneira bastante resumida, sobre a: CEMIG, ANEEL, PROCEL, ABNT e INMETRO. 1.1 - Energia Energia é a capacidade de produzir trabalho e ela pode se apresentar sob várias formas: • energia Térmica; • energia Mecânica; • energia Elétrica; • energia Química; • energia Atômica, etc. Uma das mais importantes características da energia é a possibilidade de sua transformação de uma forma para outra. Por exemplo: a energia térmica pode ser convertida em energia mecânica (motores de combustão interna), energia química em energia elétrica (pilhas) etc. Entretanto, na maioria das formas em que a energia se apresenta, ela não pode ser transportada, ela tem que ser utilizada no mesmo local em que é produzida. 1.1.1 - Energia Elétrica A energia elétrica é uma forma de energia que pode ser transportada com maior facilidade. Para chegar em uma casa, nas ruas, no comércio, ela percorre um longo caminho a partir das usinas geradoras de energia. 10 Manual de Instalações Elétricas Residenciais André Marie Ampère desenvolveu em 1820, um estudo e estabeleceu as leis do eletromagnetismo. Em sua homenagem, foi dado o seu nome à unidade de medida de intensidade de corrente elétrica: Ampère (A). Em 1827, Joseph Henry iniciou uma série de experiências eletromagnéticas e descobriu o conceito de indução elétrica, construindo o primeiro motor elétrico. Também em 1827, Georg Simon Ohm, trabalhando no campo da corrente elétrica desenvolveu a primeira teoria matemática da condução elétrica nos circuitos: Lei de Ohm. O trabalho só foi reconhecido em 1841. Em sua homenagem, foi dado o seu nome à unidade de resistência elétrica: Ohm (Ω). Em 1831, Michel Faraday descobriu o fenômeno da indução eletromagnética, explicando que é necessária uma alteração no campo magnético para criar corrente. Faraday descobriu que a variação na intensidade de uma corrente elétrica que percorre um circuito fechado, induz uma corrente numa bobina próxima. Observou também, uma corrente induzida ao introduzir-se um imã nessa bobina. Estes resultados tiveram uma rápida aplicação na geração de corrente elétrica. Em 1838, Samuel Finley Breese Morse conclui o seu invento do telégrafo. Em 1860, Antonio Pacinotti construiu a primeira máquina de corrente contínua com enrolamento fechado em anel. Nove anos depois, Zénobe Gramme apresentou a sua máquina dínamo - elétrico, aproveitando o enrolamento em anel. Em 1875 foi instalado, em uma estação de trem em Paris, um gerador para ascender as lâmpadas da estação, através da energia elétrica. Foram fabricadas máquinas a vapor para movimentar os geradores. A distribuição de eletricidade é feita inicialmente em condutores de ferro, posteriormente de cobre e a partir de 1850, os fios são isolados por uma goma vulcanizada. Em 1873 foi realizada pela primeira vez a reversibilidade das máquinas elétricas, através de duas máquinas Gramme que funcionavam, uma como geradora e a outra como motora. Ainda neste mesmo ano foi publicado o Tratado sobre Eletricidade e Magnetismo por James Clerk Maxwell. Este tratado, juntamente com as experiências levadas a efeito por Heinrich Rudolph Hertz em 1885 sobre as propriedades das ondas eletromagnéticas geradas por uma bobina de indução, demonstrou que as ondas de rádio e luz são ondas eletromagnéticas, diferindo apenas na sua freqüência. Em 1876, Alexandre Graham Bell patenteou o primeiro telefone com utilização prática. Thomas Alvas Edison fêz uma demonstração pública de sua lâmpada incandescente, em 1879. Essa lâmpada possibilitou o fim da iluminação feita através de chama de azeite, gás, etc, que foi substituída pela iluminação de origem elétrica. No mesmo ano, Ernest Werner von Siemens pôs em circulação, em uma exposição em Berlim, o primeiro comboio movido a energia elétrica. A primeira central hidroelétrica foi instalada em 1886 nas cataratas do Niágara. Na década subseqüente foram ensaiados, os primeiros transportes de energia elétrica em corrente contínua. Máquinas elétricas como o alternador, o transformador e o motor assíncrono foram desenvolvidos ao ser estabelecida a supremacia da corrente alternada sobre a corrente contínua. Gugliemo Marchese Marconi aproveitando estas idéias dez anos mais tarde, utiliza ondas de rádio no seu telégrafo sem fio. Em 1901 foi transmitida a primeira mensagem de rádio através do Oceano Atlântico. 11 Manual de Instalações Elétricas Residenciais O elétron, partícula de carga negativa presente no átomo, foi descoberto por Joseph Jone Thompson em 1897. Em 1907 Ernest Rutherford, Niels Bohr e James Chadwick estabeleceram a atual definição de estrutura do átomo, até então, considerada a menor porção de matéria não divisível. 1.3 - Tensão e Corrente Elétrica Todas as substâncias, gasosas, líquidas ou sólidas, são constituídas de pequenas partículas invisíveis a olho nu, denominadas átomos. O átomo é composto de três partículas básicas: Prótons, Nêutrons e Elétrons. Os Prótons e os Nêutrons formam o núcleo do átomo. O Próton tem carga positiva e Nêutron não possui carga elétrica. As suas massas são equivalentes. O Elétron possui uma carga negativa e a sua massa, por ser muito pequena, é desprezível. Em um átomo, o número de Elétrons é igual ao número de Prótons, sendo portanto, o átomo eletricamente neutro, pois a soma das cargas dos Elétrons (negativas) com as cargas dos Prótons (positivas) é igual a zero. Os Elétrons existentes em um condutor de eletricidade (ver Capítulo 3 página 64), estão em constante movimento desordenado. 12 Manual de Instalações Elétricas Residenciais Para que estes elétrons se movimentem de forma ordenada nos fios, é necessário ter uma força que os empurre. Essa força é chamada de Tensão Elétrica (U). Sua unidade de medida é o Volt. O símbolo desta unidade é V. Exemplo: Tensão elétrica de 127 V (Volts). O movimento ordenado de elétrons, provocado pela tensão elétrica, forma uma corrente de elétrons. Essa corrente de elétrons é chamada de Corrente Elétrica (I). Sua unidade de medida é o Ampère. O símbolo desta unidade é A. Exemplo: Corrente elétrica de 10 A (Ampères). Para que se tenha uma idéia do comportamento da tensão e da corrente elétrica, será feita uma analogia com uma instalação hidráulica. A pressão feita pela água, depende da altura da caixa d’água. A quantidade de água que flui pelo cano vai depender: desta pressão, do diâmetro do cano e da abertura da torneira. De maneira semelhante, no caso da energia elétrica, tem-se: ➡ A pressão da energia elétrica é chamada de Tensão Elétrica (U). ➡ A Corrente Elétrica (I) que circula pelo circuito depende da Tensão e da Resistência Elétrica (R). A Resistência Elétrica (R) que o circuito elétrico oferece à passagem da corrente, é medida em Ohms (Ω) (ver subitem 1.4 página 13) e varia com a seção dos condutores (ver subitem 3.3 página 67). 1.7 – Cálculo da Energia Elétrica A Energia Elétrica (E) é a Potência Elétrica (P) vezes o tempo de utilização (em horas, por exemplo) do qual o fenômeno elétrico acontece (uma lâmpada acesa, por exemplo). E = (U x I) x t ou E = P x t Onde: E: Energia Elétrica; P: Potência Elétrica; U: Tensão Elétrica; I: Corrente Elétrica; t: Tempo normalmente nesse caso, é adotado em horas (h). A unidade de Energia Elétrica (E) é o Watt-hora e o seu símbolo é Wh. 1.8 – Cálculos de Grandezas Elétricas: I, R e E Um chuveiro elétrico com uma potência de 4.400 Watts, 127 Volts, funcionando durante 15 minutos. Calcular a corrente, resistência e a energia elétrica consumida. a) Corrente Elétrica I = P U 4.400 W = 34,6 A (Ampères) 127 V b) Resistência Elétrica R = U I 127 V = 3,7 Ω (Ohms) 34,6 A c) Energia Elétrica E = P x t Primeiramente, deverá ser transformado o tempo dos 15 minutos em horas. Fazendo uma “regra de três”, tem-se: 60 minutos 1 hora 15 minutos x x = 15 minutos = 0,25 h ou 1 h 60 minutos 4 4.400 W x 0,25 h = 1.100 Wh Observação: Efetuar os mesmos cálculos, considerando que o chuveiro elétrico foi feito para funcionar em 220 Volts. 15 Manual de Instalações Elétricas Residenciais 16 Manual de Instalações Elétricas Residenciais 1.9 – Unidades de Medidas As unidades de medidas no Brasil, utilizam o Sistema Internacional de Unidades. A Tabela 1.1 mostra as principais unidades. As unidades com os seus múltiplos e submúltiplos podem ser escritas com o seu nome por extenso ou através de seu símbolo. UNIDADES LEGAIS DO BRASIL UNIDADE SÍMBOLO DETERMINA UNIDADES ELÉTRICAS Ampère A Corrente Elétrica Volt V Tensão Elétrica Watt W Potência Elétrica Volt-Àmpere VA Potência Elétrica Volt-Àmpere reativo Var Potência Elétrica Cavalo-vapor cv Potência Elétrica Watt-hora Wh Energia Elétrica Ohm Ω Resistência Elétrica Lúmen lm Fluxo Luminoso Lux lx Iluminância Hertz Hz Freqüência OUTRAS UNIDADES Metro m Comprimento Quilômetro km Comprimento Metro quadrado m2 Área Metro cúbico m3 Volume Grama g Massa (Peso) Quilograma kg Massa (Peso) Litro l Volume Segundo s Tempo Minuto min Tempo Hora h Tempo Quilômetro por hora km/h Velocidade Grau Celcius oC Temperatura Grau Kelvin K Temperatura termodinâmica Tabela 1.1 As unidades possuem múltiplos e submúltiplos. A utilização de um ou outro, é em função da facilidade de expressar a quantidade da unidade em questão. 17 Manual de Instalações Elétricas Residenciais Por exemplo, a Potência de uma lâmpada incandescente comum, é melhor ser expressa em W (Watts) do que em kW (quilowatts). É sempre referido a uma lâmpada de 100 Watts e não uma lâmpada de 0,1 kW. A letra k (escrita em letra minúscula) colocada antes da unidade, representa que esta unidade está multiplicada por 1.000 e, consequentemente o número (valor da quantidade) deverá ser dividido por 1.000. Do exemplo do subitem 1.8 página 15, a Energia Elétrica também poderá ser expressa: 1.100 Wh ou 1,1 kWh (Quilowatt-hora) A Tabela 1.2 a seguir relaciona os valores mais usados das unidades elétricas, com os seus múltiplos e submúltiplos. UNIDADES ELÉTRICAS – MÚLTIPLOS E SUBMÚLTIPLOS GRANDEZA NOME SÍMBOLO RELAÇÃO TENSÃO Microvolt µV 0,000001 V Milivolt mV 0,001 V Volt V 1 V Quilovolt kV 1.000 V CORRENTE Microampère µA 0,000001 A Miliampère mA 0,001 A Ampère A 1 A Quilo Ampère kA 1.000 A RESISTÊNCIA Ohm Ω 1 Ω Quilo Ohm kΩ 1.000 Ω Megaohm MΩ 1.000.000 Ω POTÊNCIA Watt W 1 W Quilowatt kW 1.000 W Megawatt MW 1.000.000 W ENERGIA Watt-hora Wh 1 Wh Quilowatt-hora kWh 1.000 Wh Megawatt-hora MWh 1.000.000 Wh Tabela 1.2 Outras unidades, muito utilizadas para expressar a Potência Elétrica de motores são: ➡ Cavalo Vapor que equivale a 735,5 W. Sua unidade é o cv. ➡ Horse Power (inglesa) que equivale a 746 W. Sua unidade é o HP. 20 Manual de Instalações Elétricas Residenciais As principais características são: · as cargas não dependem umas das outras para o funcionamento do circuito elétrico; · existe mais de 1 (um) caminho para a passagem da corrente elétrica; · as tensões elétricas nas cargas são iguais a tensão da fonte de alimentação, isto é: UFonte = U1 = U2 = U3 A Corrente Elétrica (I) total absorvida pelas cargas é igual a soma das correntes de cada carga: ITotal = I1 + I2 + I3 O inverso da Resistência Elétrica (R) equivalente, é igual a soma dos inversos das resistências de cada carga: 1 = 1 + 1 + 1 REquivalente = R1 R2 R3 Exemplo: No desenho deste subitem 1.10.2, se a tensão é de 120 Volts, R1 = 30 Ω, R2 = 20 Ω e R3 = 60 Ω. Calcular: a) A resistência elétrica equivalente; b) A corrente em cada resistência e a corrente elétrica total; c) A tensão elétrica em cada resistência. Solução: a) 1 = 1 + 1 + 1 REquivalente R1 R2 R3 1 = 1 + 1 + 1 = 2 + 3 + 1 = 6 REquivalente 30 20 60 60 60 REquivalente = 60 = 10 Ω 6 b) Do subitem 1.4 página 13, tem-se: I = U e I Total = I1 + I2 + I3 R I1 = U = 120 V = 4 A R1 30 Ω 21 Manual de Instalações Elétricas Residenciais I2 = U = 120 V = 6 A R2 20 Ω I3 = U = 120 V = 2 A R3 60 Ω I Total = I1 + I2 + I3 = 4 A + 6 A + 2 A = 12 A c) UFonte = U1 = U2 = U3 = 120 Volts 1.11 – Circuitos em Corrente Alternada A forma mais comum que a corrente elétrica se apresenta é em Corrente Alternada (CA). Serão apresentadas neste subitem 1.11, de uma maneira bastante simplificada, as principais características dos circuitos elétricos monofásicos e trifásicos em Corrente Alternada (CA). Caso sejam necessárias maiores informações, deve-se procurar uma literatura técnica especializada. 1.11.1 - Circuito Monofásico Um gerador com uma só bobina (enrolamento), chamado de “Gerador Monofásico” ao funcionar, gera uma Tensão entre seus terminais. Nos geradores monofásicos de corrente alternada, um dos terminais deste Gerador é chamado de Neutro (N) e o outro de Fase (F). Um circuito monofásico é aquele que tem uma Fase e um Neutro (F e N). A tensão elétrica (U) do circuito é igual à tensão entre Fase e Neutro (UFN). A forma de onda da Tensão Elétrica, é uma senoide. F N U t 1 Período 1.11.2 - Circuito Trifásico Um gerador com três bobinas (enrolamentos), ligadas conforme a figura abaixo, é um “Gerador Trifásico”. Nesta situação, o Gerador Trifásico está com as suas três bobinas ligadas em Estrela (Y ). Este gerador tem um ponto comum nesta ligação, chamado de ponto neutro. Neste circuito trifásico com a ligação em Estrela, as relações entre as tensões elétricas, a tensão entre Fase e o Neutro (UFN) e a tensão entre Fases (UFF), são: UFF = x UFN ou UFN = UFF / Sendo que (leia-se raiz quadrada de três) = 1,732 A Corrente Elétrica ( I ) é igual nas três Fases. Quando as bobinas do Gerador Trifásico são ligadas entre si, de modo a constituírem um circuito fechado, como na figura abaixo, o Gerador tem uma ligação em Triângulo (Delta) (∆ ). √3 22 Manual de Instalações Elétricas Residenciais F1 F2 F3 U t F1 120°120°120° Período 360° F2 F3 √3 √3 25 Manual de Instalações Elétricas Residenciais • Resistência (R) quando se tratar de um circuito formado por resistência elétrica (ver subitem 1.4 página 13); • Reatância Indutiva (XL) quando se tratar de bobinas (enrolamentos); • Reatância Capacitiva (XC) quando se tratar de capacitor. A soma vetorial das Reatâncias (XL + XC) com a Resistência (R), dá-se o nome de Impedância (Z) . A Reatância Capacitiva opõe-se à Reatância Indutiva. Assim, a Reatância total do circuito (X) é dada pela diferença entre XL e XC (o maior destes dois valores determina se o circuito é Indutivo ou Capacitivo). X = XL - XC XL > XC (o circuito é Indutivo) XC > XL (o circuito é Capacitivo) Os valores da Resistência, das Reatâncias e da Impedância podem ser representados graficamente através de um triângulo retângulo. Onde: Z = Impedância do circuito, da pela fórmula Z = R2 + X2 R = Resistência do circuito X = Reatância total do circuito (que é igual a X = XL - XC ou X = XC – XL). Uma carga ligada a um circuito de Corrente Alternada (CA) é quase sempre constituída de Resistência e Reatância ou seja, tem-se normalmente uma Impedância (Z). A expressão da Potência P = U x I em geral, não é válida para todos os circuitos de corrente alternada, devendo ser acrescida à expressão um outro fator, conforme será mostrado a seguir. No subitem 1.6 página 14, foi mostrado que a Potência (P) pode ser dada por: P = R x I2 em W (Watts) Se for substituído na expressão acima, a Resistência (R) pela Reatância total (X), tem-se: P = X x I2 = VA (Volt Ampère) Substituindo pela Impedância: P = Z x I2 = VA (Volt Ampère) · Z R X 90 √ 26 Manual de Instalações Elétricas Residenciais A expressão da Potência Reativa do circuito elétrico depende das Reatâncias existentes. Este produto é chamado de Potência Aparente, sendo a “soma vetorial” das duas Potências - Ativa e a Reativa. Observação: não será explicado neste Manual, como é feita a soma vetorial. Caso sejam necessárias maiores informações, deve-se procurar uma literatura técnica especializada. Assim tem-se: W = R x I2 VAr = X x I2 VA = Z x I2 Onde: W = Potência Ativa (ou kW, que corresponde a 1.000 W) VAr = Potência Reativa (ou kVAr, que corresponde a 1.000 VAr) VA = Potência Aparente (ou kVA, que corresponde a 1.000 VA) Essas três Potências formam um triângulo, denominado “Triângulo das Potências”. O ângulo Ø é o ângulo do Fator de Potência (cosØ = FP) (ver subitem 1.12 página 27). A partir da expressão (kVA)2 = (kW)2 + (kVAr)2 retirada do “Triângulo das Potências”, tem-se as seguintes expressões matemáticas: kVA = (kW)2 + (kVAr)2 = Potência Aparente (kVA) kW = kVA x cosØ = Potência Ativa (kW) kVAr = kVA x senØ = Potência Reativa (kVAr) cosØ = kW / kVA = Fator de Potência e ainda: senØ = kVAr / kVA tgØ = kVAr / kW Observações: 1 - Se a Potência Ativa (Watts) for trifásica, tem-se que: P = x UFF x I x cosØ√3 √ Ø 27 Manual de Instalações Elétricas Residenciais 2 – os valores de: coseno (cos), seno (sen) e tangente (tg), podem ser obtidos através de uma calculadora científica ou de uma tabela de funções trigonométricas. 3 – No Anexo 2 página 208 contém fórmulas utilizadas para cálculo das grandezas elétricas mais comuns. 1.12 – Fator de Potência A Potência Ativa (kW) é a que efetivamente produz trabalho. A Potência Reativa (kVAr) ou magnetizante, é utilizada para produzir o fluxo magnético necessário ao funcionamento dos motores, transformadores, etc. Para que se tenha uma idéia de como são essas duas formas de energia, será dado um exemplo de uma forma bastante simplificada, fazendo uma analogia com um copo cheio de cerveja. Caso sejam necessárias maiores informações, deve-se procurar uma literatura técnica especializada. Num copo cheio de cerveja, tem-se uma parte ocupada pelo líquido e outra ocupada pela espuma. Para aumentar a quantidade de líquido nesse copo, tem-se que diminuir a espuma. Assim, de maneira semelhante ao copo com cerveja, a Potência Elétrica solicitada, por exemplo, por um motor elétrico, é composta de Potência Ativa (kW) que “corresponde” ao líquido e Potência Reativa (kVAr) que “corresponde” à espuma. A soma vetorial (em ângulo de 90º), das Potências Ativa e Reativa é denominada de Potência Aparente (kVA) que “corresponde” ao volume do copo (o líquido mais a espuma). Assim como o volume do copo é limitado, também a capacidade em kVA de um circuito elétrico (fiação, transformadores, etc) é limitada. Para aumentar a Potência Ativa em um circuito, é preciso reduzir a Potência Reativa. O Fator de Potência (FP) é definido como o quociente entre a Potência Ativa (kW) e a Potência Aparente (kVA). O Fator de Potência (FP) também é igual ao coseno do ângulo Ø do “Triângulo das Potências” (ver subitem 1.11.3 página 23). FP = cos Ø ou FP = kW kVA 30 Manual de Instalações Elétricas Residenciais 1.13.1.1 - Lâmpada Néon Trata-se de uma lâmpada que tem a característica de acender quando um dos seus terminais é posto em contato com um elemento energizado e outro é posto em contato com o “terra”. Normalmente, é apresentada sob a forma de uma caneta ou chave de parafusos, onde um dos terminais é a ponta da caneta (ou da chave) e o outro faz o “terra” através do próprio corpo da pessoa. Devido a grande resistência interna da lâmpada, a corrente circulante não é suficiente para produzir a sensação de choque nas pessoas. Entretanto, seu uso é restrito a circuito de baixa tensão, como nas instalações elétricas residenciais. A vantagem deste instrumento é o fato de indicar, de maneira simples, a presença de tensão no local pesquisado: a lâmpada acende quando a ponta do aparelho encosta no fio Fase energizado. Quando se encosta no fio Neutro, não acende. Existem alguns tipos de aparelhos com lâmpada de neon, com os mesmos princípios de funcionamento, que possibilitam identificar também, além do fio Fase e o fio Neutro, o valor aproximado da tensão, se é 127 V, 220 V ou 380 Volts. IMPORTANTE: Não se deve usar uma lâmpada de néon individualmente (sem o invólucro), pois ela poderá estourar, causando algum acidente. 1.13.1.2 - Teste com uma Lâmpada A identificação dos fios: Fase (energizado) e o Neutro, de uma instalação elétrica interna, pode ser feita com uma lâmpada incandescente de 220 Volts, colocada em um receptáculo com 2 fios terminais. Um dos seus terminais é posto em contato com um dos fios que se deseja testar e o outro terminal é posto em contato com um condutor devidamente aterrado (uma haste de terra cravada no chão). Se a lâmpada acender, significa que o fio que se deseja identificar é o fio Fase. Caso contrário, se a lâmpada permanecer apagada, significa que o fio utilizado é o Neutro. ATENÇÃO: a lâmpada incandescente a ser utilizada, tem que ser fabricada para a tensão de 220 Volts, pois pode ser que os dois fios que deseja identificar, sejam Fase- Fase (220 Volts) ou que o transformador que alimenta a instalação elétrica seja de 220 Volts entre Fase e Neutro. Daí, se a lâmpada for de 127 Volts, ela poderá estourar no teste, provocando um acidente com a pessoa. É recomendável que a lâmpada esteja protegida com um anteparo e poderá ser de uma potência baixa, por exemplo: 15 ou 25 Watts. 220V 220V Aterramento Fase Neutro 31 Manual de Instalações Elétricas Residenciais 1.13.1.3 - Lâmpada em “Série” A Lâmpada em “Série” possibilita verificar a continuidade de um circuito ou equipamento elétrico. A lâmpada utilizada deve ser de baixa potência (15 Watts) a fim de limitar os valores da corrente, evitando danos ao equipamento sob teste. A lâmpada é colocada em série, com o equipamento a ser testado. Ao ligar o aparelho, se a lâmpada acender, significa que o aparelho está com “continuidade” (poderá não estar “queimado”) no circuito elétrico. 1.13.2 - Aparelhos de Medição Os aparelhos de medição são instrumentos que, através de escalas, gráficos ou dígitos, fornecem os valores numéricos das grandezas que estão sendo medidas. Como foi ressaltado anteriormente, é sempre preferível a utilização desses aparelhos, ao invés dos aparelhos de teste (ver subitem 1.13.1 página 29). Os aparelhos de medição, segundo a maneira de indicar os valores medidos, podem ser: a) Indicadores: - são aparelhos que, através do movimento de um ponteiro em uma escala ou de uma tela digital, fornecem os valores instantâneos das grandezas medidas. b) Registradores: - têm o princípio de funcionamento semelhante ao dos instrumentos indicadores, sendo que, é adaptado à extremidade do ponteiro, uma pena, onde se coloca tinta. Sob a pena corre uma tira de papel com graduação na escala conveniente. A velocidade do papel é constante, através de um mecanismo de relojoaria. Deste modo, tem-se os valores da grandeza medida a cada instante e durante o tempo desejado. Alguns instrumentos deste tipo utilizam um disco ao invés de tira (rolo) de papel, nesse caso, o tempo da medição é limitado a uma volta do disco. c) Integradores: - São aparelhos que somam os valores instantâneos e fornecem a cada instante os resultados acumulados. O aparelho integrador pode ser de ponteiros ou de ciclômetro ou dígitos. Um exemplo, são os medidores de energia elétrica das residências. 32 Manual de Instalações Elétricas Residenciais 1.13.2.1 - Amperímetro e Voltímetro O Amperímetro é utilizado para medir a corrente elétrica de um circuito e deve ser ligado em série com a carga. O Voltímetro é utilizado para medir a tensão elétrica de um circuito e deve ser ligado em paralelo com a carga. 1.13.2.2 – Wattímetro A medição de potência elétrica (W) é feita por um aparelho, o Wattímetro, que associa as funções do Voltímetro e do Amperímetro. No Wattímetro, é indicado o terminal comum que deve ser ligado ao lado da carga. 1.13.2.3 – Ohmímetro O Ohmímetro é utilizado para medir a resistência elétrica (Ω). O Ohmímetro é também usado para se verificar a continuidade de um circuito elétrico. Observação: o circuito elétrico deverá estar desernergizado. A V CARGAFonte W CARGAFonte Medidor R 35 Manual de Instalações Elétricas Residenciais 1.14.1 - Companhia Energética de Minas Gerais – CEMIG A Companhia Energética de Minas Gerais - CEMIG é uma das maiores e mais importantes concessionárias de energia elétrica do Brasil, por sua posição estratégica, competência técnica e mercado atendido. A área de concessão da CEMIG cobre cerca de 96% do território do Estado de Minas Gerais, na região Sudeste do Brasil, correspondendo a 567 mil km2, o equivalente a extensão territorial de um País do porte da França. Uma das tarefas mais importantes da CEMIG é zelar pela qualidade do serviço prestado a mais de 5,6 milhões de clientes, ou 17 milhões de pessoas, espalhados em mais de 5.400 localidades de 774 municípios do Estado de Minas Gerais. A preocupação é operar todo esse sistema com mais de 323 mil km de linhas de distribuição, o maior da América Latina, da forma mais satisfatória possível, preservando a qualidade. Para atingir esse objetivo, a CEMIG busca, continuamente, novas técnicas, investe na preservação e aumento da segurança do sistema elétrico, etc. Dados da CEMIG em 2002 Nº de consumidores 5.591.490 Nº de localidades servidas 5.415 Sedes municipais 774 Distritos 510 Povoados 4.131 Fundada em 22 de maio de 1952, pelo então governador do Estado de Minas Gerais e, depois, presidente do Brasil, Juscelino Kubitscheck de Oliveira, com o objetivo de dar suporte a um amplo programa de modernização, diversificação e expansão do parque industrial do Estado, a CEMIG conseguiu cumprir o seu papel de ser um instrumento de desenvolvimento da economia mineira e, ao mesmo tempo, ser uma Empresa eficiente e competitiva. 36 Manual de Instalações Elétricas Residenciais A Usina de Gafanhoto foi o ponto de partida da CEMIG. Construída pelo Governo do Estado de Minas Gerais, em 1946, e transferida à CEMIG em 1952, Gafanhoto tem grande significado econômico, pois permitiu a implantação da Cidade Industrial de Contagem, o maior pólo industrial do Estado de Minas Gerais. Depois vieram as usinas hidrelétricas de Itutinga, Piau, Salto Grande, Cajuru e Três Marias. Marco da participação da engenharia nacional na construção de grandes barragens, Três Marias possui um reservatório de uso múltiplo, que além de gerar energia viabiliza a navegação no rio São Francisco nos períodos de estiagem, o abastecimento urbano e a irrigação na região. Na década de 60, com o apoio do Programa de Desenvolvimento das Nações Unidas e do Banco Mundial, foi levantado o potencial hidrelétrico de nossos rios e identificados os projetos mais viáveis. Assim, surgiram as hidrelétricas de Jaguara, Volta Grande, São Simão, Emborcação e Nova Ponte. Principais Usinas (em 2002) Potência (MW) São Simão (rio Paranaíba) 1.710 Emborcação (rio Paranaíba) 1.192 Nova Ponte (rio Araguari) 510 Jaguara (rio Grande) 424 Miranda (rio Araguari) 408 Três Marias (rio São Francisco) 396 Volta Grande (rio Grande) 380 Outras 1.003 CAPACIDADE TOTAL 6.023 Para continuar garantindo o abastecimento do mercado de energia elétrica do País, a CEMIG, em parceria com empresas privadas, participa de consórcios para construir novas usinas no Estado do Estado de Minas Gerais. Hoje, como uma das principais empresas integradas do Brasil, gera, transmite, distribui e comercializa energia elétrica para o segundo mercado consumidor do País, onde estão instaladas algumas das maiores empresas nas áreas de siderurgia, mineração, automobilística, metalurgia, etc. Reconhecida pelo alto padrão técnico de seu pessoal, a CEMIG é considerada uma empresa modelo no setor elétrico brasileiro. A excelência técnica da CEMIG ultrapassou as fronteiras de sua área de concessão no Estado de Minas Gerais, atuando em outros estados brasileiros e em mais de dez países das Américas, Ásia e África, onde a marca CEMIG é sinônimo de excelência na venda de serviços e de consultoria para a área energética. Há 51 anos, os compromissos da CEMIG vão além de produzir a melhor energia do Brasil. No mundo dos mercados virtuais, das tecnologias que vencem distâncias e barreiras geográficas em frações de segundos, a CEMIG investe na sua capacidade de garantir e preservar a mais importante energia desse planeta: a vida. 37 Manual de Instalações Elétricas Residenciais Para a CEMIG, o bem-estar social e o direito de cidadania às pessoas, são as premissas básicas para a promoção de uma ordem social centrada no ser humano. Por isso, não mede esforços para garantir ações, programas e investimentos que tenham o objetivo de melhorar e promover a qualidade de vida e o desenvolvimento social das comunidades em que atua. A CEMIG sempre busca acompanhar permanentemente a evolução tecnológica, atuando em diversos projetos/programas, tais como: desenvolvimento de tecnologias, normalização interna e externa, fontes alternativas de energia, conservação de energia, segurança no trabalho, segurança do consumidor, interação com o mercado de energias, meio ambiente, etc. 1.14.2 - Agência Nacional de Energia Elétrica - ANEEL A Agência Nacional de Energia Elétrica - ANEEL, autarquia em regime especial, vinculada ao Ministério de Minas e Energia - MME, foi criada pela Lei 9.427, de 26/12/1996. Principais atribuições: • Regular e fiscalizar a geração, a transmissão, a distribuição e a comercialização da energia elétrica, defendendo o interesse do consumidor; • Mediar os conflitos de interesses entre os agentes do setor elétrico e entre estes e os consumidores; • Conceder, permitir e autorizar instalações e serviços de energia; garantir tarifas justas; zelar pela qualidade do serviço; • Exigir investimentos; estimular a competição entre os operadores e assegurar a universalização dos serviços. A missão da ANEEL é proporcionar condições favoráveis para que o mercado de energia elétrica se desenvolva com equilíbrio entre os agentes e em benefício da sociedade. 1.14.3 - Programa Nacional de Conservação de Energia Elétrica - PROCEL O objetivo do PROCEL - Programa Nacional de Conservação de Energia Elétrica é promover a racionalização da produção e do consumo de energia elétrica, eliminando os desperdícios e reduzindo os custos e os investimentos setoriais. Criado em dezembro de 1985 pelos Ministérios de Minas e Energia e da Indústria e Comércio, o PROCEL é gerido por uma Secretaria Executiva subordinada à Eletrobrás. Em 18 de julho de 1991, o PROCEL foi transformado em Programa de Governo, tendo suas abrangência e responsabilidade ampliadas. O PROCEL tem diversos programas/projetos para o combate ao desperdício de energia, tais como: para os setores residencial, comercial, serviços, industrial, órgãos governamentais, iluminação pública, PROCEL nas Escolas, meio ambiente, etc. 40 Manual de Instalações Elétricas Residenciais Os objetivos da Normalização são: Proporcionar a redução da crescente variedade de produtos e procedimentos. Proporcionar meios mais eficientes na troca de informação entre o fabricante e o cliente, melhorando a confiabilidade das relações comerciais e de serviços. Proteger a vida humana e a saúde. Prover a sociedade de meios eficazes para aferir a qualidade dos produtos. Evitar a existência de regulamentos conflitantes sobre produtos e serviços em diferentes países, facilitando assim, o intercâmbio comercial. Na prática, a Normalização está presente na fabricação dos produtos, na transferência de tecnologia, na melhoria da qualidade de vida através de normas relativas à saúde, à segurança e à preservação do meio ambiente. Os benefícios da Normalização podem ser: Qualitativos, permitindo: • utilizar adequadamente os recursos (equipamentos, materiais e mão-de-obra), • uniformizar a produção, • facilitar o treinamento da mão-de-obra, melhorando seu nível técnico, • registrar o conhecimento tecnológico, • facilitar a contratação ou venda de tecnologia. Quantitativos, permitindo: • reduzir o consumo de materiais, • reduzir o desperdício, • padronizar componentes, • padronizar equipamentos, • reduzir a variedade de produtos, • fornecer procedimentos para cálculos e projetos, • aumentar a produtividade, • melhorar a qualidade, • controlar processos. É ainda um excelente argumento de vendas para o mercado internacional como, também, para regular a importação de produtos que não estejam em conformidade com as normas do país importador. Economia Comunicação Segurança Proteção do Consumidor Eliminação de Barreiras Técnicas e Comerciais 41 Manual de Instalações Elétricas Residenciais 1.14.5 – Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - INMETRO O Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - INMETRO é uma autarquia federal, vinculada ao Ministério do Desenvolvimento, Indústria e Comércio Exterior, que atua como Secretaria Executiva do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro), colegiado interministerial, que é o órgão normativo do Sistema Nacional de Metrologia, Normalização e Qualidade Industrial (Sinmetro). Objetivando integrar uma estrutura sistêmica articulada, o Sinmetro, o Conmetro e o INMETRO foram criados pela Lei 5.966, de 11 de dezembro de 1973, cabendo a este último substituir o então Instituto Nacional de Pesos e Medidas (INPM) e ampliar significativamente o seu raio de atuação a serviço da sociedade brasileira. No âmbito de sua ampla missão institucional, o INMETRO objetiva fortalecer as empresas nacionais, aumentando sua produtividade por meio da adoção de mecanismos destinados à melhoria da qualidade de produtos e serviços. Sua missão é trabalhar decisivamente para o desenvolvimento sócio-econômico e para a melhoria da qualidade de vida da sociedade brasileira, contribuindo para a inserção competitiva, para o avanço científico e tecnológico do país e para a proteção do cidadão, especialmente nos aspectos ligados à saúde, segurança e meio-ambiente. Dentre as competências e atribuições do INMETRO destacam-se: • Gerenciar os sistemas brasileiros de credenciamento de Laboratórios de Calibração e de Ensaios e de organismos de certificação e de inspeção; • Fomentar a utilização de técnicas de gestão da qualidade na indústria nacional; • Coordenar a Rede Brasileira de Laboratórios de Calibração (RBC), a Rede Brasileira de Laboratórios de Ensaios (RBLE) e a Rede Nacional de Metrologia Legal (RNML); • Fiscalizar e verificar os instrumentos de medir empregados na indústria, no comércio e em outras atividades relacionadas à proteção do cidadão e do meio ambiente; • Coordenar a participação brasileira em organismos internacionais relacionados com os seus objetivos; • Secretariar o Conmetro e seus comitês técnicos; • Desenvolver atividades de pesquisa básica e aplicada em áreas críticas da metrologia; • Realizar os trabalhos inerentes à metrologia legal; • Difundir informações tecnológicas, notadamente sobre metrologia, normas, regulamentos técnicos e qualidade; • Supervisionar a emissão de regulamentos técnicos no âmbito governamental; • Promover e supervisionar o sistema de normalização técnica consensual; • Prover o país de padrões metrológicos primários, estruturar e gerenciar o sistema de referências metrológicas brasileiras e assegurar rastreabilidade aos padrões metrológicos das redes brasileiras de laboratórios credenciados; 42 Manual de Instalações Elétricas Residenciais • Delegar competência supervisionada a outras instituições para atuarem como referência metrológica nacional em áreas críticas para as quais não detém a competência técnica ou laboratorial; • Conquistar o reconhecimento internacional do sistema de metrologia e do sistema brasileiro de credenciamento de laboratórios, de organismos de certificação e de organismos de inspeção. NOTA: É importante também, consultar outros sites na Internet para manter-se informado e atualizado. Como exemplo, tem-se muitos bons sites de fabricantes de equipamentos elétricos. Nesse caso, além das informações técnicas sobre os produtos fabricados, costuma-se encontrar também, literaturas técnicas sobre diversos assuntos ligados a eletricidade. Em caso de dúvidas, deve-se utilizar o e-mail (“Fale Conosco”) do fabricante, para saná-las. Grande parte dos fabricantes têm o telefone 0800 (ligação gratuita), que também deve ser utilizado para sanar as dúvidas. Exercícios 1 – Qual é a potência do transformador necessária para se ligar um motor de 7,5 cv com FP = 0,65? Calcular a corrente que circula pelo circuito para tensão igual a 220 Volts. 2 – Calcular o fator de potência de um transformador de 15 kVA a plena carga (100%), alimentando uma carga de 7,5 kW. Isolador ou olhal Alça preformada p/ cabo multiplexado Condutor faseCondutor neutro Cabo multiplexado (Duplex, triplex ou quadruplex) Conector Ampactinho, tipo cunha ou compressão H Condutores do ramal de entrada Recomposição da conexão 5 voltas - fita PVC isolante 45 Manual de Instalações Elétricas Residenciais • A dois fios: - uma Fase e um Neutro - tensão de 127 V; • A três fios: - duas Fases e um Neutro - tensões de 127 e 220 V, ou - tensões de 127 e 254 V; • A quatro fios: - três Fases e um Neutro - tensões de 127 e 220 V. NOTA: O que determina se a unidade consumidora será atendida por 2, 3 ou 4 fios, será em função da carga (kW) instalada. As Normas referenciadas anteriormente neste subitem 2.1, estabelecem os procedimentos que deverão ser seguidos. A Norma vigente da CEMIG ND 5.1 “Fornecimento de Energia Elétrica em Tensão Secundária – Rede de Distribuição Aérea – Edificações Individuais” estabelece os seguintes tipos de ligações para as unidades consumidoras residenciais, de acordo com a Tabela 2.1 a seguir: TIPOS DE CARGAS LIGAÇÃO LIGAÇÕES Fases Fios A Até 10 kW 1 2 B Maior que 10 e menor ou igual a 15 kW 2 3 D Maior que 15 e menor ou igual a 75 kW 3 4 Tabela 2.1 Observação: Deve-se consultar as Normas vigentes da CEMIG quanto a restrição de alguns tipos de cargas a serem instaladas/ligadas e a caracterização dos diversos tipos de ligação. A Fatura de Energia Elétrica é definida pela Resolução da ANEEL no 456, de 29/11/00, como a nota fiscal que apresenta a quantia total que deve ser paga (R$) pela prestação do serviço público de energia elétrica, referente a um período especificado, discriminando as parcelas correspondentes. 46 Manual de Instalações Elétricas Residenciais A Fatura de energia é também conhecida como Conta de Energia.É importante salientar, que de acordo com a legislação em vigor, a Resolução da ANEEL no 456, de 29/11/00, as unidades consumidoras residenciais atendidas pela CEMIG, terão as seguintes considerações básicas em relação a sua Fatura (conta) de Energia: 1. Unidade consumidora atendida a dois fios e faturada pela Tarifa Social: a) toda unidade consumidora com consumo mensal inferior a 80 kWh, calculado com base na média móvel dos últimos doze meses, será faturada pela Tarifa Social, desde que o consumo mensal não ultrapasse por duas vezes a 80 kWh; b) toda unidade consumidora com consumo mensal maior ou igual a 80 kWh e até 220 kWh, calculado com base na média móvel dos últimos doze meses, desde que o seu titular seja inscrito como beneficiário em um dos seguintes programas “Bolsa Escola”, “Bolsa Alimentação” e “Cartão Cidadão do Governo Federal”. O consumidor que se enquadrar em uma dessas condições deverá se cadastrar na concessionária, com a fatura de energia elétrica e com o cartão de inscrição em um dos programas acima mencionados. 2. Unidade consumidora residencial atendida a dois fios e não classificada como baixa renda: não terá descontos escalonados nas tarifas de energia elétrica. Será cobrada a tarifa plena da classe Residencial. O consumo mínimo mensal de energia a ser faturado será de 30 kWh. 3. Unidade consumidora residencial atendida a três fios: não terá descontos escalonados nas tarifas de energia elétrica. Será cobrada a tarifa plena da classe Residencial. O consumo mínimo mensal de energia a ser faturado será de 50 kWh. 4. Unidade consumidora residencial atendida a quatro fios: não terá descontos escalonados nas tarifas de energia elétrica. Será cobrada a tarifa plena da classe Residencial. O consumo mínimo mensal de energia a ser faturado será de 100 kWh. 2.1.1 – Contatos com a CEMIG A “Fale com a Cemig” foi criada para facilitar ainda mais a vida do consumidor, permitindo maior segurança, conforto e economia. Através do 0800 310 196 (ligação gratuita) o consumidor pode solicitar quaisquer serviços da Cemig durante 24 horas, sem necessidade de ir a uma Agência de Atendimento. É importante que, ao solicitar algum serviço, sempre tenha em mãos a Fatura de energia, CPF ou documento de identidade. 47 Manual de Instalações Elétricas Residenciais A seguir estão listados os principais serviços via telefone Fale com a Cemig – 0800 310 196: Alteração de dados cadastrais; Alteração de carga; Alteração data de vencimento da fatura de energia (conta); Consulta sobre débitos; Desligamento a pedido; Emissão de segunda via de conta; Informações sobre Interrupção de energia; Ligação Nova; Ligação Provisória; Problemas na Iluminação Pública; Religação de unidade consumidora; Reclamação sobre valores cobrados na fatura; Tarifas e dados da Fatura de Energia (conta); Verificar risco para terceiros, etc. Observação: também pode-se usar o e-mail: atendimento@cemig.com.br As Agências de Atendimento da CEMIG, também poderão prestar os esclarecimentos necessários quanto a Legislação em vigor e Normas da CEMIG. 2.1.2 – Qualidade dos Produtos e Serviços Os produtos e serviços oferecidos aos consumidores devem estar em conformidade com a Legislação e Normas pertinentes em vigor, a fim de permitir o funcionamento adequado e seguro de toda a instalação elétrica e de seus componentes. Os componentes devem ser selecionados e instalados de forma a satisfazerem as prescrições, das Normas vigentes: NBR 5410/97, Normas da ABNT aplicáveis a esses componentes e Normas da CEMIG. Os componentes devem ser adequados a TENSÃO e a CORRENTE de toda a instalação elétrica da residência. O Código de Defesa do Consumidor (Lei Federal no 8.078, de 11/09/1990) prevê obrigações e responsabilidades, bem como, penalidades para os fabricantes, engenheiros, projetistas, técnicos, eletricistas instaladores, concessionárias de energia elétrica, revendedores, etc, quanto a qualidade dos produtos oferecidos e dos serviços prestados ao consumidor. Ver também o subitem 1.14 página 34. Nesse sentido, a CEMIG sempre procura fornecer aos seus consumidores, uma energia elétrica de qualidade e continuidade, de acordo com a Legislação em vigor. A Avaliação de Conformidade expedida pelo Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - INMETRO, demonstra a qualidade do: produto, serviço, processo ou profissional, desde que atenda a requisitos de normas ou regulamentos pré – estabelecidos. Que sobe Que desce Ponto de luz incandescente Ponto de luz fluorescente Arandela média-altura Arandela alta Refletor Tomada alta Tomada média Tomada baixa (de 30 a 40 cm do piso) (mínimo 25 cm) Tomada de força (bipolar) Tomada de força (tripolar) Tomada para TV (antena) Quadro de Distribuição de Circuitos - QDC Quadro de medição Gerador Motor Cigarra Campainha Botão de campainha Chave de faca (simples) Chave de faca (bipolar) Chave de faca (com fusível) Disjuntor a seco Convenção: Eletroduto não cotado – aquele que aparece mais no Projeto, por exemplo, 16 mm; Fio não cotado – Idem, 1,5 mm2. 50 Manual de Instalações Elétricas Residenciais 51 Manual de Instalações Elétricas Residenciais 2.3 - Dimensionamento de Carga Para determinar a carga de uma instalação elétrica residencial, deve-se somar todas as cargas elétricas previstas para: as tomadas de uso geral, a potência das lâmpadas e dos demais equipamentos elétricos. A Norma vigente da ABNT, a NBR 5410/97 “Instalações Elétricas de Baixa Tensão” determina que a previsão de cargas em VA (Volt Ampère, ver subitens 1.11.3 página 23 e 1.12 página 27) dos equipamentos deverá ser de acordo com as seguintes prescrições a seguir. 2.3.1 - Tomadas de Uso Geral • Em banheiros, cozinhas, copas, copas-cozinhas, áreas de serviço, lavanderias: para as 3 (três) primeiras tomadas, a carga mínima por tomada a ser conside rada, deverá ser de 600 VA. A partir da quarta tomada (se existir), deverá ser considerada a carga mínima de 100 VA para cada tomada. IMPORTANTE: A determinação da carga deverá ser feita, considerando cada um desses cômodos separadamente; • Em subsolos, garagens, sótão, varandas: deverá ser prevista no mínimo uma tomada de 1.000 VA; • Nos demais cômodos ou dependências, no mínimo 100 VA por tomada. 2.3.2 - Tomadas de Uso Específico • Considerar a carga do equipamento elétrico a ser ligado, fornecida pelo Fabricante; • Ou então, calcular a carga a partir da tensão nominal, da corrente nominal e do fator de potência (ver subitens 1.11 página 21 e 1.12 página 27) do equipamento elétrico. 2.3.3 - Iluminação A iluminação adequada deve ser calculada de acordo com a Norma vigente NBR 5413/92 “Iluminação de Interiores”, da ABNT. Entretanto a Norma NBR 5410/97 estabelece como alternativa que para determinar as cargas de iluminação em unidades consumidoras residenciais, poderão ser adotados os seguintes critérios: • Em cômodos ou dependências com área igual ou inferior a 6 m2 deve ser prevista uma carga mínima de 100 VA; • Em cômodos ou dependências com área superior a 6 m2 deve ser prevista uma carga mínima de 100 VA para os primeiros 6 m2, acrescidas de 60 VA para cada aumento de 4 m2. 52 Manual de Instalações Elétricas Residenciais IMPORTANTE: Os valores apurados correspondem à potência destinada a iluminação para o efeito de dimensionamento dos circuitos elétricos e não necessariamente à potência nominal das lâmpadas. Exemplo: Qual a carga de iluminação incandescente a ser instalada numa sala de 3,5 m de largura e 4 m de comprimento? • A área da sala: 3,5 m x 4 m = 14 m2 • Carga para a Iluminação: • Para os primeiros 6 m2: 100 VA. Para os outros 8 m2: 60 VA + 60 VA; • A Carga total será: 100 VA + 60 VA + 60 VA = 220 VA A Tabela 2.2 a seguir fornece os dados para calcular, de uma maneira prática, a carga de iluminação incandescente para cômodos, com área variando de 6 a 30 m2. ÁREA DO CÔMODO CARGA DE ILUMINAÇÃO (m2) (VA) Até 6 100 De 6,1 a 10 160 De 10,1 a 14 220 De 14,1 a 18 280 De 18,1 a 22 340 De 22,1 a 26 400 De 26,1 a 30 460 Tabela 2.2 2.4 - Número Mínimo de Tomadas por Cômodo Cada cômodo de uma residência deverá ter tantas tomadas, quantos forem os aparelhos elétricos a serem instalados/ligados dentro do mesmo. Uma sala de estar, por exemplo, deve ter tomadas de uso geral para individuais: o televisor, os aparelhos de som, vídeo, abajures, aspirador de pó, etc. A Norma vigente, a NBR 5410/97 determina as seguintes quantidades mínimas de Tomadas de Uso Geral em uma residência: • 1 tomada por cômodo para área igual ou menor do que 6 m2; • 1 tomada para cada 5 m, ou fração de perímetro, para áreas maiores que 6 m2; • 1 tomada para cada 3,5 m ou fração de perímetro para copas, cozinhas, copas- cozinhas, áreas de serviço, lavanderias, sendo que acima de cada bancada de 30 cm ou maior, deve ser prevista pelo menos uma tomada; • 1 tomada em sub-solos, sótãos, garagens e varandas; • 1 tomada junto ao lavatório, em banheiros. 55 Manual de Instalações Elétricas Residenciais 2.6.1 – Conformidade dos Interruptores e Tomadas É importante que todo produto esteja em conformidade com as normas vigentes da ABNT. Para exemplificar, serão relacionados alguns testes que um interruptor tem que se submeter para comprovar que está dentro de norma da ABNT e receber a marca de conformidade do Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - INMETRO. Para os Interruptores a Norma NBR 6527 e para as Tomadas de Uso Geral a NBR 6147. • Os organizadores que irão conhecer a fábrica, analisam as máquinas, laboratórios e a equipe técnica. Após aprovarem tudo, iniciam as provas nos produtos. • Isolamento e rigidez dielétrica: o interruptor tem que resistir a 2.000 V, sem deixar passar corrente de fuga, com resistência superior a mínima aceitável, que é de 5 Megaohms. • Elevação de temperatura: ligam um condutor apertando um pouco o parafuso do borne do interruptor, durante 1 hora, passando 35% da corrente nominal e o interruptor não pode aquecer mais de 45 ºC. • Sobrecorrente e durabilidade: primeiro o interruptor tem que resistir a 200 mudanças de posição, ou seja, 100 “liga-desliga” com tensão 10% e corrente 25% superior a nominal, além de um fator de potência extremamente desfavorável (0,3). Segundo, o interruptor passa por mais de 40 mil mudanças de posição, com corrente e tensão nominal, ou seja, 250 V e 10 A. • Resistência mecânica: recebe o impacto de um martelo com 150 gramas a uma altura de 10 cm, e o produto não pode apresentar rachadura por onde pudesse ter acesso as partes energizadas do produto. • Resistência ao calor: o produto é colocado em uma estufa a 100 ºC, sem umidade, durante uma hora e não pode apresentar deformações. • Prova de resistência ao calor anormal ou fogo: um fio incandescente a 850 ºC que provoca fogo é colocado sobre o produto e embaixo deste produto é colocado um papel de seda a uma altura de 20 cm. Retira-se o fio em menos de 30 segundos e o papel de seda não deve inflamar com o gotejamento. Como pode ser observado, o interruptor terá que resistir a 40 mil mudanças de posição (manobras), com tensão e corrente nominal, bornes enclausurados, evitando contatos acidentais e a resistência a impactos. Tomadas de Uso Geral - 10 mil mudanças de posição (inserção e retirada do plugue), bornes enclausurados, evitando contatos acidentais, resistência a impactos. Plugues monoblocos - 10 mil mudanças de posição (inserção e retirada da tomada), prensa-cabo que não permite que o cabo solte quando puxado. NOTA: Todo componente de uma instalação elétrica, tem que obedecer uma ou mais Normas da ABNT. É importante identificá-las e conhecê-las. 56 Manual de Instalações Elétricas Residenciais 2.6.2 - Esquemas de Ligações Elétricas de Interruptores e Tomadas A seguir estão apresentados os esquemas de ligações elétricas de alguns tipos de interruptores e tomadas de uso geral: Certo Errado Observação: O condutor Neutro deve ser sempre ligado em um ponto (ou polo) do Receptáculo (ou porta-lâmpada) da luminária e o Condutor Fase em um ponto Interruptor. O Condutor Retorno sai do outro ponto do Interruptor, indo até ao outro ponto Receptáculo, completando assim, o circuito elétrico. Tomada e interruptor na mesma caixa Observação: Apesar da Tomada e do Interruptor estarem na mesma caixa, os circuitos elétricos devem ser distintos. Nas Tomadas, além da seção mínima dos condutores ser de 2,5 mm2 e das cores de Isolação serem diferentes (ver Capítulo 3 página 64), deve-se ligar o Condutor Fase, o Condutor Neutro e o Condutor de Proteção (PE). A seguir, serão feitos comentários sobre as Tomadas de Uso Geral que ainda não estão em de acordo com a NBR 14136 (ver subitem 2.6 página 53). Geralmente as Tomadas de Uso Geral, existentes, têm orifícios “redondos” junto com orifícios “chatos”. PE 57 Manual de Instalações Elétricas Residenciais Os orifícios “chatos” de encaixe na Tomada de 3 pólos (2P + T), são diferentes entre si. O plugue do aparelho elétrico, só é encaixado em uma determinada posição, o que dá mais segurança. Veja a figura a seguir. É importante salientar que na Tomada de 3 (três) pólos, os fios do circuito de tomadas da instalação elétrica, devem ser ligados desta forma: • Condutor Fase – Deve ser ligado ao lado direito da Tomada. Esse pólo é do tipo “chato” e menos largo do que o do Neutro. • Condutor Neutro – Deve ser ligado do lado esquerdo da Tomada, onde geralmente poderá estar escrito a letra “W”. Esse pólo do tipo “chato”, é mais largo do que o da Fase. Por uma Norma americana, o condutor Neutro deverá ser identificado pela cor branca (“White”, daí a identificação pela letra “W”). Os aparelhos elétricos de procedência americana, um dos fios de ligação do aparelho, o de lista branca, está no mesmo lado desse pino “chato” mais largo. • Condutor de Proteção (PE) – Deve ser ligado na parte inferior da Tomada, onde geralmente está escrito a letra “G” (do inglês “Ground”, que significa aterramento). Também está mostrado o símbolo do aterramento . Ver subitem 4.4.3 página 100. Observação: Essas tomadas não permitem que um pino do condutor Fase, entre no local onde é destinado para o condutor de Proteção (PE), por exemplo. Se uma tomada de 3 pólos for diferente da descrita neste subitem 2.6.1, devem ser identificados os pólos dos condutores Fase, Neutro e o de Proteção, de acordo com um catálogo de tomadas do fabricante, com o objetivo de realizar a correta ligação nos respectivos condutores. NOTA: Existem tomadas com 2 pólos, com orifícios “redondos” junto com orifícios “chatos”, sendo que estes últimos, existe um pólo “chato” mais largo do que o outro. O condutor Neutro, deverá ser ligado nesse pólo “chato” mais largo. Será apresentado a seguir, o esquema elétrico da seguinte situação: considerando o cômodo de um quarto, que tem o interruptor ao lado da porta com uma tomada abaixo dele (a 30 cm do piso) e uma tomada em outra parede. 60 Manual de Instalações Elétricas Residenciais 1) O Condutor Neutro é ligado em um ponto no Receptáculo da luminária; 2) O Condutor Fase deverá ser ligado em um dos Interruptores Paralelos, no pino central. Dos outros dois pinos deste Interruptor, deverão sair 2 condutores de Retorno, até o outro Interruptor Paralelo; 3) Do pino central deste segundo Interruptor Paralelo, sairá outro condutor de retorno, que deverá ser ligado no outro pólo do receptáculo da luminária, completando assim, o circuito elétrico. Observação: Às vezes a ligação de um conjunto de Interruptores Paralelo, é feita conforme o esquema a seguir. Essa ligação está INCORRETA, portanto, não deve ser feita, pois o condutor Fase e o Condutor Neutro, são ligados no próprio interruptor, o que tem uma grande possibilidade de ocorrer um curto-circuito e defeito, colando em risco as pessoas. F N Simbologia: INSTALAÇÃO INCORRETA 61 Manual de Instalações Elétricas Residenciais 2.7.2 - Interruptor Intermediário (“Four Way”) É usado quando se deseja comandar uma lâmpada ou um conjunto de lâmpadas de mais de dois locais diferentes. O interruptor Intermediário (“Four Way”) é colocado/instalado entre dois interruptores Paralelo (“Three Way”). Podem ser instalados tantos interruptores Intermediários (“Four Way”) quantos forem necessários os pontos de comando, no mesmo circuito. O esquema a seguir, mostra uma ligação de uma lâmpada comandada de 3 locais diferentes, com a utilização de 1 interruptor Intermediário (“Four Way”) e 2 interruptores Paralelo (“Three Way”). 1) O Condutor Neutro é ligado em um ponto no Receptáculo da luminária; 2) O Condutor Fase deverá ser ligado em um dos Interruptores Paralelos, no pino central. Dos outros dois pinos deste Interruptor, deverão sair 2 condutores de Retorno, indo até aos dois pinos do mesmo lado do Interruptor Intermediário; 3) Dos outros dois pinos do Interruptor Intermediário, sairão 2 condutores de Retorno, que deverão ser ligados no segundo Interruptor Paralelo; 4) Do pino central deste segundo Interruptor Paralelo, sairá outro condutor de Retorno, que deverá ser ligado no outro polo do Receptáculo da luminária, completando assim, o circuito elétrico. Neutro Fase Retorno Retorno Retorno Simbologia: F N F N F N 62 Manual de Instalações Elétricas Residenciais 2.8 – Quadro de Distribuição de Circuitos - QDC O Quadro de Distribuição de Circuitos – QDC deverá ser feito de material metálico e ser instalado em local de fácil acesso, preferencialmente no centro de cargas da instalação elétrica e possuir uma identificação do lado externo de seus componentes – Dispositivos de Proteção e de Segurança e dos Circuitos Elétricos com as respectivas cargas (ver subitem 5.3.7.5 página 170). A Norma NBR 5410/97 estabelece que deverá ser prevista em cada QDC, uma capacidade de reserva (espaço), que permita ampliações futuras da instalação elétrica interna, compatível com a quantidade e tipo de circuitos efetivamente previstos inicialmente, conforme a seguir: • QDC com até 6 circuitos, prever espaço de reserva para o mínimo 2 circuitos; • QDC de 7 a 12 circuitos, prever espaço de reserva para o mínimo 3 circuitos; • QDC de 13 a 30 circuitos, prever espaço de reserva para o mínimo de 4 circuitos; • QDC acima de 30 circuitos, prever espaço de reserva para o mínimo de 15% dos circuitos. No Quadro de Distribuição de Circuitos – QDC, deverão ser instalados os dispositivos de proteção para os respectivos circuitos (um para cada circuito). O QDC deverá conter/possibilitar a instalação de: • Barramentos para os condutores das Fases; • Terminal para ligação do condutor Neutro; • Terminal para ligação do condutor de Proteção (PE); • Disjuntores Termomagnéticos; • Dispositivos Diferencial-Residual – DR; • Dispositivos contra sobretensões, etc. O Quadro de Distribuição de Circuitos – QDC deve ser bem fechado, com o objetivo de evitar que as pessoas acidentem ao encostar acidentalmente ou manusear os dispositivos de segurança. Também deve possibilitar o enclausuramento das partes energizadas (conexões dos cabos com os dispositivos de proteção e de segurança, barramentos, etc). IMPORTANTE: O Quadro de Distribuição de Circuitos - QDC é o centro de distribuição de energia de toda a instalação elétrica de uma residência. Recebe os fios que vêm do medidor É no QDC que se encontram os dispositivos de proteção É do QDC que partem os circuitos que vão alimentar diretamente as lâmpadas, tomadas e aparelhos elétricos 65 Manual de Instalações Elétricas Residenciais 3.2 – Considerações Básicas sobre os Condutores Os condutores de metal podem ter os seguintes tipos de formação: • Fio – formado por um único fio sólido; • Cabo – formado por encordoamento de diversos fios sólidos. Esses condutores podem ser isolados ou não: • Isolação – é um termo qualitativo referindo-se ao tipo do produto da capa para isolar eletricamente o condutor de metal; • Isolamento – é quantitativo, referindo-se à classe de tensão para a qual o condutor foi projetado; • Quando o condutor não tem isolação (capa) é chamado de condutor “Nu”. A camada de isolação de um condutor, pode ser de compostos termoplásticos como o PVC (Cloreto de Polivinila) ou por termofixos (vulcanização) como o EPR (Borracha Etileno-propileno) e o XLPE (Polietileno Reticulado) etc. Os condutores isolados são constituídos em dois tipos: “à prova de tempo” e para instalações embutidas. Os primeiros só podem ser usados em instalações aéreas, uma vez que a sua isolação não tem a resistência mecânica necessária para a sua instalação em eletrodutos. Os outros podem ser usados em qualquer situação. A escala de fabricação dos condutores adotada no Brasil é a “série métrica” onde os condutores são representados pela sua seção transversal (área) em mm2 (leia-se: milímetros quadrados). Normalmente são fabricados condutores para transportar a energiaelétrica nas seções de 0,5 mm2 a 500 mm2. Os fios são geralmente encontrados até a seção de 16 mm2. A Norma vigente, a NBR 5410/97 prevê em instalações de baixa tensão, o uso de condutores isolados (unipolares e multipolares) e cabos “nus” (utilizados principalmente em Aterramentos, ver subitem 4.4.1 página 97). Um Condutor Isolado é constituído por um fio ou cabos recoberto por uma isolação. Isolação Condutor Isolação Condutor Cobertura Condutor sólido Cabo 66 Manual de Instalações Elétricas Residenciais Um Cabo Unipolar é constituído de um condutor isolado recoberto por uma camada para a proteção mecânica, denominada cobertura. Condutores isolados (fios) (1) Condutor sólido de fio de cobre nu, têmpera mole. (2) Camada interna (composto termoplático de PVC) cor branca até a seção nominal de 6 mm2. (3) Camada externa (composto termoplático de PVC) em cores. Condutores isolados (cabos) (1) Condutor formado de fios de cobre nu, têmpera mole (encordoamento). (2) Camada interna (composto termoplático de PVC) cor branca até a seção nominal de 6 mm2. (3) Camada externa (composto termoplático de PVC) em cores. Um Cabo Multipolar é constituído por dois ou mais condutores isolados, envolvidos por uma camada para a proteção mecânica, denominada também, de cobertura. (1) Condutor formado de fios de cobre nu, têmpera mole (encordoamento). (2) Isolação (composto termoplático de PVC) em cores. (3) Capa interna de PVC. (4) Cobertura (composto termoplático de PVC) cor preta (cabos multipolares). Um Cabo “Nu” é constituído apenas pelo condutor propriamente dito, sem isolação, cobertura ou revestimento. 3 2 1 3 2 1 4 3 2 1 67 Manual de Instalações Elétricas Residenciais 3.3 - Seção (mm2) de Condutores A Norma vigente, a NBR 5410/97 só admite nas instalações elétr icas residenciais, o uso de condutores de cobre, salvo para os casos de condutores de aterramento e proteção, que têm especificações próprias. Em caso de dúvidas, deve-se consultar esta Norma. 3.3.1 - Seção Mínima e Identificação dos Condutores de Cobre As seções mínimas dos condutores de cobre para a Fase, o Neutro e para o condutor de Proteção (PE), definas pela Norma NBR 5410/97, deverão ser: a) Condutor Fase - Circuito de Iluminação: 1,5 mm2 - Circuito de Força - Tomadas de Uso Geral ou Específico: 2,5 mm2 Observações: • Nos cordões flexíveis para ligação de aparelhos eletrodomésticos, abajures, lustres e aparelhos semelhantes, poderão ser usados, o condutor de 0,75 mm2; • A seção correta do condutor de cobre, deverá ser calculada conforme o subitem 3.3.2 página 68. b) Condutor Neutro – este condutor, deve possuir a mesma seção (mm2) que o condutor Fase, nos seguintes casos: - Em circuitos monofásicos a 2 e 3 condutores e bifásicos a 3 condutores, qualquer que seja a seção (mm2); - Em circuitos trifásicos, quando a seção dos condutores Fase for inferior a 25 mm2; - Em circuitos trifásicos, quando for prevista a presença de harmônicas, qualquer que seja a seção (mm2). Observação: A Norma vigente, a NBR 5410/97, estabelece também, outro modo para o dimensionamento do condutor Neutro, que não se aplica nesse Manual. Em caso de dúvidas, deve-se consultar a Norma NBR 5410/97. c) Condutor de Proteção (PE) – este condutor, deverá ser dimensionado de acordo com a Tabela 3.1: Seção dos condutores da Fase - Seção Mínima dos condutores S (mm2) de Proteção - Sp (mm 2) S menor ou igual a 16 mm2 Igual a do condutor Fase S maior do que 16 e menor do que 35 mm2 Igual ao condutor 16 mm2 S maior do que 35 mm2 Igual a metade da S do condutor Fase Tabela 3.1 70 Manual de Instalações Elétricas Residenciais A Tabela 3.3 (da Norma NBR 5410/97) a seguir, especifica a capacidade de condução de corrente elétrica para condutores de cobre, instalados em eletrodutos embutidos alvenaria (na parede). CAPACIDADE DE CONDUÇÃO DE CORRENTE, EM AMPERES, PARA CONDUTORES DE COBRE ISOLADOS, ISOLAÇÃO DE PVC, TEMPERARATURA AMBIENTE DE 30ºC E TEMPERATURA DE 70ºC NO CONDUTOR Condutores isolados ou cabos SEÇÃO NOMINAL unipolares em eletroduto de seção circular EM (mm2) embutido em alvenaria 2 Condutores 3 Condutores Carregados Carregados 0,75 11 10 1 14 12 1,5 17,5 15,5 2,5 24 21 4 32 28 6 41 36 10 57 50 16 76 68 25 101 89 35 125 110 50 151 134 70 192 171 95 232 207 120 269 239 Tabela 3.3 Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria. Cabo multipolar em eletroduto de seção circular embutido em alvenaria. 71 Manual de Instalações Elétricas Residenciais Quando a temperatura ambiente for superior a 30ºC e/ou o número de condutores instalados no mesmo eletroduto for superior a 3 (três), a Norma vigente, a NBR 5410/97 determina que os valores da Tabela 3.3 “Capacidade de Condução de Corrente” coluna “2 Condutores Carregados” deverão levar em consideração os seguintes fatores de redução: de TEMPERATURAS (Tabela 3.4) e/ou NÚMEROS DE CONDUTORES (Tabela 3.5), para determinar a nova Capacidade de Condução de Corrente do condutor. TEMPERATURAS Temperatura do Ambiente (ºC) Fator de Redução 35 0,94 40 0,87 45 0,79 50 0,71 55 0,61 60 0,50 Tabela 3.4 NÚMERO DE CONDUTORES Número de Condutores Fator de Redução no mesmo Eletroduto 4 0,65 5 0,60 6 0,57 7 0,54 8 0,52 9 a 11 0,50 12 a 15 0,45 15 a 19 0,41 Mais de 20 0,38 Tabela 3.5 De acordo com a Norma vigente, a NBR 5410/97 número de condutores carregados a ser considerado é o de condutores efetivamente percorridos por corrente. Assim tem-se: • Circuito trifásico sem neutro = 3 condutores carregados; • Circuito trifásico com neutro = 4 condutores carregados; • Circuito monofásico a 2 condutores = 2 condutores carregados; • Circuito monofásico a 3 condutores = 3 condutores carregados; • Circuito bifásico a 2 condutores = 2 condutores carregados; • Circuito bifásico a 3 condutores = 3 condutores carregados. 72 Manual de Instalações Elétricas Residenciais NOTAS: De acordo com a Norma NBR 5410/97, tem-se: 1) Quando num circuito trifásico com Neutro as correntes são consideradas equilibradas, o condutor Neutro não deve ser computado, considerando-se, portanto, 3 condutores carregados. 2) O condutor utilizado unicamente como o condutor de Proteção (PE) não é considerado como carregado. 3) Serão aplicados simultaneamente os dois fatores (temperatura e número de condutores) quando as duas condições se verificarem ao mesmo tempo. 4) Os fatores de correção de TEMPERATURA (Tabela 3.4) e de NÚMERO DE CONDUTORES (Tabela 3.5), foram calculados admitindo-se todos os condutores vivos permanentemente carregados, com 100% (cem por cento) de sua carga. A seguir será apresentado um exemplo da utilização dessas Tabelas. Determinar o condutor capaz de transportar uma corrente de 38 A, sendo que todos os condutores do circuito estão permanentemente carregados, com 100% de sua carga, nos três casos indicados: a) Dois condutores carregados instalados em eletroduto embutido em alvenaria e temperatura ambiente de 30ºC; b) Seis condutores carregados instalados em eletroduto embutido em alvenaria e temperatura ambiente de 30ºC; c) Seis condutores carregados instalados em eletroduto embutido em alvenaria e temperatura de 45ºC. Solução: a) 38 A - 2 condutores no eletroduto embutido em alvenaria - 30ºC. Trata-se da aplicação direta da Tabela 3.3 “Capacidade de Condução de Corrente” da página 70. Consultando a primeira coluna “2 Condutores Carregados”, verifica-se que o condutor correto é o de 6 mm2. b) 38 A - 6 condutores no eletroduto embutido em alvenaria - 30ºC. Neste caso deve ser aplicado o Fator de Redução correspondente ao número de condutores no mesmo eletroduto. Pela Tabela 3.4 página 71, o Fator de Redução para 6 condutores carregados é 0,57. Dividindo a corrente elétrica pelo Fator de Redução, tem-se: I = 38 / 0,57 = 66,7 A Consultando a Tabela 3.3 página 70 “Capacidade de Condução de Corrente” coluna “2 Condutores Carregados”, verifica-se que o condutor correto é o de 16 mm2. Ao invés de dividir a corrente pelo Fator de Redução, poderia ser feito também, a multiplicação do Fator de Redução pelos valores tabelados, até se obter um número compatível com a corrente a ser transportada. Entretanto este método poderá ser mais trabalhoso.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved