Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Pavimentação Asfáltica, Manuais, Projetos, Pesquisas de Engenharia Civil

livro patrocinado pela PETROBRAS, destinado a estudantes de engenharia

Tipologia: Manuais, Projetos, Pesquisas

2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 26/10/2010

samuel-brumati-8
samuel-brumati-8 🇧🇷

4.4

(5)

3 documentos

Pré-visualização parcial do texto

Baixe Pavimentação Asfáltica e outras Manuais, Projetos, Pesquisas em PDF para Engenharia Civil, somente na Docsity! AVIMEN! TAÇA ASFALTIC « Formação Básica para Engenheiros . Liedi Bariani Bernucci Laura Maria Goretti da Motta Jorge Augusto Pereira Ceratti Jorge Barbosa Soares Currículo resumido dos professores do PROASFALTO: Laura Maria Goretti da Motta Engenheira Civil (1976), pela Universidade Federal de Juiz de Fora (UFJF), Mestre em Engenharia Civil (1979), pela Coordenação dos Programas de Pós-graduação em Engenharia (COPPE) da Universidade Federal do Rio de Janeiro (UFRJ) e Doutora pela COPPE/UFRJ, 1991. Professora Adjunta do Programa de Engenharia Civil da COPPE/UFRJ desde 1984. Coordena desde 1994 o Setor de Pavimentos do Laboratório de Geotecnia da COPPE. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Possui diversos trabalhos publicados no Brasil e exterior. Já orientou mais de 50 mestres e doutores. Já atuou em mais de 40 projetos de cooperação com empresas e órgãos do setor de pavimentação. Liedi Bariani Bernucci Engenheira Civil pela Escola Politécnica da Universidade de São Paulo (1981), especialização no Instituto de Geotécnica da Escola Politécnica Federal de Zurique na Suiça (1984 e 1985), Mestre em Engenharia de Solos pelo Departamento de Estruturas e Geotécnica da EPUSP (1987), estágio de Doutoramento pelo Instituto de Geotécnica da Escola Politécnica Federal de Zurique, na Suíça (1987 e 1988), - Doutora em Engenharia de Transportes pelo Departamento de Engenharia de Transportes da EPUSP (1995), Livre-Docente em Engenharia de Transportes pela EPUSP (2001). Professora Titular no Departamento de Engenharia de Transportes da EPUSP, Coordenadora do Laboratório de Tecnologia de Pavimentação da EPUSP e Chefe do Departamento de Engenharia de Transportes da EPUSP, atua como docente em graduação e pós-graduação, como coordenadora de diversos projetos de pesquisa e extensão. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. E consultora em pavimentação, o possui diversas publicações e já formou diversos R mestres e doutores em Transportes. * Engenheiro Civil pela Universidade Federal do ;, Ceará (1992). Mestre (1994) e Ph.D. (1997) em, E Engenharia Civil pela Texas A&M University. Coordenador da Pós-Graduação em Engenharia * de Transportes da UFC. Coordenador do * Laboratório de Mecânica dos Pavimentos da UFC * a e da REDE ASFALTO N/NE. Professor Associado do Departamento de Engenharia de Transportes « da UFC, atua como docente em graduação e pós- graduação e na coordenação de projetos de pesquisa e capacitação junto a agências de fomento, empresas e órgãos do setor de pavimentação. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Atua também como consultor e possui diversas publicações nos principais periódicos e congressos técnico/científicos nacionais e internacionais na área de pavimentação. Jorge Augusto Pereira Ceratti Engenheiro Civil pela Universidade Federal do Rio Grande do Sul (UFRGS), 1976, Mestre em Engenharia Civil pela Universidade Federal do Rio Grande do Sul (UFRGS), 1979. Doutor em Engenharia Civil pela Coordenação dos Programas de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro (COPPE/UFRJ), 1991. Professor Associado no Departamento de Engenharia Civil da UFRGS, onde atua como docente em graduação e pós- graduação, tendo formado, desde 1981, diversos mestres e doutores em Engenharia Civil. Coordenador do Laboratório de Pavimentação da UFRGS. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Atua como consultor em pavimentação, desenvolvendo projetos de cooperação com empresas e órgãos do setor de pavimentação. Possui diversas publicações nos principais periódicos e congressos técnico/científicos, nacionais e internacionais, na área de pavimentação. APRESENTAÇÃO tendo em vista a necessidade premente de melhoria da qualidade das rodovias brasileiras e a importância da ampliação da infra-estrutura de transportes, a Pe- tróleo Brasileiro S.A., a Petrobras distribuidora S.A. e a Associação Brasileira das empresas distribuidoras de Asfaltos – Abeda vêm investindo no desenvolvimento de novos produtos asfálticos e de modernas técnicas de pavimentação. Para efeti- vamente aplicar estes novos materiais e a recente tecnologia, é preciso promover a capacitação de recursos humanos. Assim, essas empresas, unidas em um empreendimento inovador, conceberam uma ação para contribuir na formação de engenheiros civis na área de pavimenta- ção: o Proasfalto – Programa Asfalto na universidade. este projeto arrojado foi criado para disponibilizar material didático para aulas de graduação de pavimentação visan- do oferecer sólidos conceitos teóricos e uma visão prática da tecnologia asfáltica. Para a elaboração do projeto didático, foram convidados quatro professores de renomadas instituições de ensino superior do Brasil. iniciou-se então o projeto que, após excelente trabalho dos professores Liedi Bariani Bernucci, da universidade de São Paulo, Laura Maria Goretti da Motta, da universidade Federal do Rio de Janei- ro, Jorge Augusto Pereira Ceratti, da universidade Federal do Rio Grande do Sul, e Jorge Barbosa Soares, da universidade Federal do Ceará, resultou no lançamento deste importante documento. o livro Pavimentação Asfáltica descreve os materiais usados em pavimentação e suas propriedades, além de apresentar as técnicas de execução, de avaliação e de restauração de pavimentação. A forma clara e didática como o livro apresenta o tema o transforma em uma excelente referência sobre pavimentação e permite que ele atenda às necessidades tanto dos iniciantes no assunto quanto dos que já atuam na área. A universidade Petrobras, co-editora do livro Pavimentação Asfáltica, sente-se honrada em participar deste projeto e cumprimenta os autores pela importante ini- ciativa de estabelecer uma bibliografia de consulta permanente sobre o tema. Petróleo Brasileiro S.A. – Petrobras Petrobras distribuidora S.A. – Asfaltos Abeda – Associação Brasileira das empresas distribuidoras de Asfaltos PReFáCio 7 1 Introdução 9 1.1 PAViMento do Ponto de ViStA eStRutuRAL e FunCionAL 9 1.2 uM BReVe hiStÓRiCo dA PAViMentAção 11 1.3 SituAção AtuAL dA PAViMentAção no BRASiL 20 1.4 ConSideRAçÕeS FinAiS 22 BiBLioGRAFiA CitAdA e ConSuLtAdA 24 2 Ligantes asfálticos 25 2.1 intRodução 25 2.2 ASFALto 26 2.3 eSPeCiFiCAçÕeS BRASiLeiRAS 58 2.4 ASFALto ModiFiCAdo PoR PoLÍMeRo 59 2.5 eMuLSão ASFáLtiCA 81 2.6 ASFALto diLuÍdo 96 2.7 ASFALto-eSPuMA 97 2.8 AGenteS ReJuVeneSCedoReS 99 2.9 o PRoGRAMA ShRP 100 BiBLioGRAFiA CitAdA e ConSuLtAdA 110 3 Agregados 115 3.1 intRodução 115 3.2 CLASSiFiCAção doS AGReGAdoS 116 3.3 PRodução de AGReGAdoS BRitAdoS 124 3.4 CARACteRÍStiCAS teCnoLÓGiCAS iMPoRtAnteS doS AGReGAdoS PARA PAViMentAção ASFáLtiCA 129 3.5 CARACteRiZAção de AGReGAdoS SeGundo o ShRP 150 BiBLioGRAFiA CitAdA e ConSuLtAdA 154 SumáRiO 4 Tipos de revestimentos asfálticos 157 4.1 intRodução 157 4.2 MiStuRAS uSinAdAS 158 4.3 MiStuRAS IN SITU eM uSinAS MÓVeiS 185 4.4 MiStuRAS ASFáLtiCAS ReCiCLAdAS 188 4.5 tRAtAMentoS SuPeRFiCiAiS 191 BiBLioGRAFiA CitAdA e ConSuLtAdA 200 5 Dosagem de diferentes tipos de revestimento 205 5.1 intRodução 205 5.2 deFiniçÕeS de MASSAS eSPeCÍFiCAS PARA MiStuRAS ASFáLtiCAS 207 5.3 MiStuRAS ASFáLtiCAS A Quente 217 5.4 doSAGeM de MiStuRAS A FRio 253 5.5 MiStuRAS ReCiCLAdAS A Quente 256 5.6 tRAtAMento SuPeRFiCiAL 263 5.7 MiCRoRReVeStiMento e LAMA ASFáLtiCA 269 BiBLioGRAFiA CitAdA e ConSuLtAdA 281 6 Propriedades mecânicas das misturas asfálticas 287 6.1 intRodução 287 6.2 enSAioS ConVenCionAiS 288 6.3 enSAioS de MÓduLo 290 6.4 enSAioS de RuPtuRA 308 6.5 enSAioS de deFoRMAção PeRMAnente 316 6.6 enSAioS CoMPLeMentAReS 327 BiBLioGRAFiA CitAdA e ConSuLtAdA 332 7 Materiais e estruturas de pavimentos asfálticos 337 7.1 intRodução 337 7.2 PRoPRiedAdeS doS MAteRiAiS de BASe, SuB-BASe e ReFoRço do SuBLeito 339 7.3 MAteRiAiS de BASe, SuB-BASe e ReFoRço do SuBLeito 352 7.4 ALGuMAS eStRutuRAS tÍPiCAS de PAViMentoS ASFáLtiCoS 365 BiBLioGRAFiA CitAdA e ConSuLtAdA 369 8 Técnicas executivas de revestimentos asfálticos 373 8.1 intRodução 373 8.2 uSinAS ASFáLtiCAS 373 (Centro de Pesquisa da Petrobras), eng. ilonir Antonio tonial (Petrobras distribui- dora), eng. Armando Morilha Júnior (Abeda), Prof. dr. Glauco túlio Pessa Fabbri (escola de engenharia de São Carlos/universidade de São Paulo), Prof. Sérgio Armando de Sá e Benevides (universidade Federal do Ceará) e Prof. álvaro Vieira (instituto Militar de engenharia). A experiência de escrever este livro a oito mãos foi deveras enriquecedora, construindo-o em camadas, com materiais convencionais e alternativos, cuida- dosamente analisados, compatibilizando-se sempre as espessuras das camadas e a qualidade dos materiais. no livro, competências e disponibilidades de tempo foram devidamente dosadas entre os quatro autores. um elemento presente foi o uso de textos anteriormente escritos pelos quatro autores em co-autoria com seus respectivos alunos e colegas de trabalho, sendo estes devidamente referen- ciados. Por fim, tal qual uma estrada, por melhor que tenha sido o projeto e a execu- ção, esta obra está sujeita a falhas, e o olhar atento dos pares ajudará a realizar a manutenção no momento apropriado. o avanço do conhecimento na fascinante área de pavimentação segue em alta velocidade e, portanto, alguns trechos da obra talvez mereçam restauração num futuro não distante. novos trechos devem surgir. Aos autores e aos leitores cabe permanecer viajando nas mais diversas es- tradas, em busca de paisagens que ampliem o horizonte do conhecimento. Aqui, espera-se ter pavimentado mais uma via para servir de suporte a uma melhor compreensão da engenharia rodoviária. Que esta via estimule novas vias, da mesma forma que uma estrada possibilita a construção de outras tantas. os autores notA iMPoRtAnte: os quatro autores participaram na seleção do conteúdo, na organização e na redação de todos os onze capítulos, e consideram suas respec- tivas contribuições ao livro equilibradas. A ordem relativa à co-autoria levou em consideração tão somente a coordenação da produção do livro. 1.1 PAVIMENTO DO PONTO DE VISTA ESTRUTURAL E FUNCIONAL Pavimento é uma estrutura de múltiplas camadas de espessuras finitas, construída sobre a superfície final de terraplenagem, destinada técnica e economicamente a resistir aos esforços oriundos do tráfego de veículos e do clima, e a propiciar aos usuários melhoria nas condições de rolamento, com conforto, economia e segurança. O pavimento rodoviário classifica-se tradicionalmente em dois tipos básicos: rígidos e flexíveis. Mais recentemente há uma tendência de usar-se a nomenclatura pavimentos de concreto de cimento Portland (ou simplesmente concreto-cimento) e pavimentos asfálti- cos, respectivamente, para indicar o tipo de revestimento do pavimento. Os pavimentos de concreto-cimento são aqueles em que o revestimento é uma placa de concreto de cimento Portland. Nesses pavimentos a espessura é fixada em função da resistência à flexão das placas de concreto e das resistências das camadas subjacentes. As placas de concreto podem ser armadas ou não com barras de aço – Figura 1.1(a). É usual designar-se a subcamada desse pavimento como sub-base, uma vez que a qua- lidade do material dessa camada equivale à sub-base de pavimentos asfálticos. Os pavimentos asfálticos são aqueles em que o revestimento é composto por uma mistura constituída basicamente de agregados e ligantes asfálticos. É formado por quatro camadas principais: revestimento asfáltico, base, sub-base e reforço do subleito. O reves- timento asfáltico pode ser composto por camada de rolamento – em contato direto com as rodas dos veículos e por camadas intermediárias ou de ligação, por vezes denomina- das de binder, embora essa designação possa levar a uma certa confusão, uma vez que esse termo é utilizado na língua inglesa para designar o ligante asfáltico. Dependendo do tráfego e dos materiais disponíveis, pode-se ter ausência de algumas camadas. As cama- das da estrutura repousam sobre o subleito, ou seja, a plataforma da estrada terminada após a conclusão dos cortes e aterros – Figura 1.1(b). O revestimento asfáltico é a camada superior destinada a resistir diretamente às ações do tráfego e transmiti-las de forma atenuada às camadas inferiores, impermeabi- lizar o pavimento, além de melhorar as condições de rolamento (conforto e segurança). Os diversos materiais que podem constituir esse revestimento são objeto deste livro. As tensões e deformações induzidas na camada asfáltica pelas cargas do tráfego estão associadas ao trincamento por fadiga dessa camada. Ela ainda pode apresentar trin- camento por envelhecimento do ligante asfáltico, ação climática etc. Parte de problemas 1 Introdução 10 Pavimentação asfáltica: formação básica para engenheiros relacionados à deformação permanente e outros defeitos pode ser atribuída ao revesti- mento asfáltico. Nos pavimentos asfálticos, as camadas de base, sub-base e reforço do subleito são de grande importância estrutural. Limitar as tensões e deformações na estrutura do pavimento (Figura 1.2), por meio da combinação de materiais e espessuras das camadas constituintes, é o objetivo da mecânica dos pavimentos (Medina, 1997). Figura 1.1 Estruturas de pavimentos (a) Concreto-cimento (corte longitudinal) (b) Asfáltico (corte transversal) Os revestimentos asfálticos são constituídos por associação de agregados e de mate- riais asfálticos, podendo ser de duas maneiras principais, por penetração ou por mistura. Por penetração refere-se aos executados através de uma ou mais aplicações de material asfáltico e de idêntico número de operações de espalhamento e compressão de camadas de agregados com granulometrias apropriadas. No revestimento por mistura, o agregado é pré-envolvido com o material asfáltico, antes da compressão. Quando o pré-envolvi- mento é feito na usina denomina-se pré-misturado propriamente dito. Quando o pré-en- volvimento é feito na pista denomina-se pré-misturado na pista. Os diferentes tipos de revestimento serão abordados em maior detalhe no Capítulo 4. Figura 1.2 Ilustração do sistema de camadas de um pavimento e tensões solicitantes (Albernaz, 1997) 13Introdução No que diz respeito à geometria, as vias romanas eram traçadas geralmente em linhas retas. Embora fosse comum que seguissem o curso de um riacho ou rio, as vias não possuíam o traçado suave como é usual nos dias de hoje, sendo compostas por peque- nos trechos retos que mudavam de direção com a forma do terreno (Margary, 1973). Destaque-se que à época os veículos possuíam eixos fixos, sendo, portanto, as curvas incômodas para as manobras. Havia uma grande preocupação com aterros e drenagem. Em geral a fundação era formada por pedras grandes dispostas em linha de modo a proporcionar uma boa plata- forma e ainda possibilitar a drenagem. A camada intermediária era então colocada sobre a fundação sólida. De acordo com Margary (1973), é comum encontrar-se areia nessa camada intermediária, misturada ou não com pedregulho ou argila, a fim de adicionar resiliência ao pavimento. A última camada de superfície varia bastante; entretanto a maioria possui pedras nas bordas formando uma espécie de meio-fio (Adam, 1994). É comum o uso de pedregulhos, sílex e outras pedras quebradas (Margary, 1973). A grande variabilidade das estradas romanas se deve exatamente à disponibilidade ou não desses materiais. A partir do século II, placas de pedras maiores começaram a ser mais usadas, em especial nas cidades principais (Adam, 1994). Nas localidades nas quais se trabalhava o ferro, o resíduo da produção era usado na superfície das estradas servindo de mate- rial ligante das pedras e agregados, formando assim uma espécie de placa. Chevallier (1976) aponta que embora atualmente se observem superfícies de estradas romanas antigas recobertas com pedras não-conectadas, é provável que o tempo e o tráfego tenham retirado o material ligante. Investigações indicam que a espessura da camada de superfície variava de 5 a 7,5cm nos casos mais delgados, até situações em que se constata uma espessura variável, de 60cm no centro da via a poucos centímetros nas bordas. Espessuras maiores são encontradas próximas a pontes, sendo atribuídas ao preenchimento necessário para nivelar a estrada (Margary, 1973). Há vários casos de sucessivas camadas de recapeamento levando o pavimento a atingir cerca de 1 a 1,5m de espessura (Chevallier, 1976). A superfície possui ainda grande declividade a partir do centro, chegando a valores de caimento de 30cm para 4,5m de largura, ou seja, uma declividade superior a 6%. Das vias romanas, a mais conhecida de todas, a Via Ápia, foi a primeira a ser nomea- da em homenagem ao seu construtor, Appius Claudius, que a criou em 312 a.C., durante a segunda Guerra Samnita. O objetivo era ligar Roma a Cápua (195km), permitindo ao exército romano chegar rapidamente, durante o período não-invernoso, às áreas de Cam- pania e Samnium, retornando a Roma no inverno. A via atravessa os pântanos de Pontino por meio de um aterro de 28km construído sobre estrado de pranchas de madeira. Após o sucesso da Via Ápia, foi realizada uma série de outros projetos viários. A Figura 1.3(a) traz uma foto nos dias atuais da Via Ostiense que ligava Óstia a Roma; a Figura 1.3(b) mostra uma via urbana em Pompéia, no sul da Itália, onde entrou em erupção o vulcão Vesúvio em 79 d.C. Observa-se nessa foto que as vias eram pavimentadas com pedras 14 Pavimentação asfáltica: formação básica para engenheiros devidamente intervaladas para permitir a circulação dos veículos rodantes; as calçadas para pedestres utilizavam a mesma técnica. A partir da queda do Império Romano em 476 d.C., e durante os séculos seguintes, as novas nações européias fundadas perderam de vista a construção e a conservação das estradas. A França foi a primeira, desde os romanos, a reconhecer o efeito do transporte no comércio, dando importância à velocidade de viagem (Mascarenhas Neto, 1790). Carlos Magno, no final dos anos 700 e início dos anos 800, modernizou a França, seme- lhantemente aos romanos, em diversas frentes: educacional, cultural e também no que diz respeito ao progresso do comércio por meio de boas estradas (Bely, 2001). Masca- renhas Neto (1790) aponta os séculos X a XII como de pouco cuidado com os Caminhos Reais da França, sendo esse descuido uma das causas da decadência do comércio e das comodidades da Europa civilizada. O mesmo autor aponta uma mudança significativa no reinado de Felipe Augusto (1180-1223), a partir do qual a França passa a ter novamente a preocupação de construir novas estradas e conservá-las. O autor indica a legislação francesa pertinente ao longo dos anos até a data de sua obra, 1790. Aponta ainda que os ingleses, observando a forma como eram calçados os caminhos da França, conseguiram então construir as vias mais cômodas, duráveis e velozes da Europa, o que foi importante para o progresso da indústria e comércio do país. A partir da experiência praticada na Inglaterra, Escócia e França, e de sua própria experiência nas províncias de Portugal, Mascarenhas Neto (1790) apresenta um Tratado para construção de estradas, uma preciosa referência para o meio rodoviário. Destaca o autor a facilidade de se encontrar em todas as províncias do reino de então, na superfície ou em minas, o saibro, o tufo, terras calcárias e arenosas, podendo, assim, construir em Portugal estradas com menos despesas do que na Inglaterra e na França. Figura 1.3 Vias romanas (a) Via Ostiense, ligando Óstia a Roma (b) Via urbana em Pompéia, Itália 15Introdução Já à época havia uma grande preocupação com diversos aspectos hoje sabidamente importantes de se considerar para uma boa pavimentação (trechos extraídos de Masca- renhas Neto, 1790): l drenagem e abaulamento: “o convexo da superfície da estrada é necessário para que as águas, que chovem sobre ela, escorram mais facilmente para os fossos, por ser esta expedição mais conveniente à solidez da estrada”; l erosão: “quando o sítio não contém pedra, ou que ela não se consegue sem longo carreto, pode suprir-se formando os lados da estrada com um marachão de terra de grossura de quatro pés, na superfície do lado externo, formando uma escarpa; se devem semear as gramas ou outras quaisquer ervas, das que enlaçam as raízes”; l distância de transporte: “o carreto de terras, que faz a sua maior mão-de-obra”; l compactação: “é preciso calcar artificialmente as matérias da composição da estrada, por meio de rolos de ferro”; l sobrecarga: “devia ser proibido, que em nenhuma carroça de duas rodas se pudessem empregar mais de dois bois, ou de duas bestas, e desta forma se taxava a excessiva carga; liberdade para o número de forças vivas, empregadas nos carros de quatro rodas, ... peso então se reparte, e causa menos ruína”; l marcação: “todas as léguas devem estar assinaladas por meio de marcos de pedra”. O autor discorre ainda sobre temas como a importância de se ter na estrada em construção uma casa móvel com ferramentas, máquinas e mantimentos, e até sobre a disciplina de trabalho e a presença de um administrador (fiscal). É dedicado um capítulo específico à conservação das estradas no qual se coloca entre as obrigações “vigiar qual- quer pequeno estrago, que ou pelas chuvas, ou pelo trilho dos transportes, principia a formar-se no corpo da estrada, nos caixilhos, nos fossos e nos aquedutos”. Finalmente o autor discorre sobre os fundos específicos para construção e administração das estradas, reconhecendo a importância do pedágio em alguns casos: “A contribuição de Barreira é evidentemente o melhor meio para a construção das estradas, e como tal se tem es- tabelecido legitimamente na Inglaterra”; mas não em todos, “pela pouca povoação, ou pela pouca afluência de viajantes nacionais, e estrangeiros, a maior parte das estradas de Portugal não são suscetíveis de semelhante meio”. Na América Latina, merecem destaque as estradas construídas pelos incas, habitan- tes da região hoje ocupada pelo Equador, Peru, norte do Chile, oeste da Bolívia e noroes- te da Argentina. O alemão Alexander Von Humboldt, combinação de cientista e viajante que durante os anos de 1799 e 1804 realizou expedições científicas por várias partes da América do Sul, qualifica as estradas dos incas como “os mais úteis e estupendos trabalhos realizados pelo homem”. O império incaico se inicia em 1438, sendo invadido por Francisco Pizarro em 1532, quando cai sob o domínio espanhol. A avançada civili- zação inca construiu um sistema de estradas que abrangia terras hoje da Colômbia até o Chile e a Argentina, cobrindo a região árida do litoral, florestas, até grandes altitudes na Cordilheira dos Andes. Havia duas estradas principais correndo no sentido longitudinal: 18 Pavimentação asfáltica: formação básica para engenheiros estrada tinha um traçado que permitia a então impressionante velocidade de 20km/h das diligências. Muito além do seu percurso de 144km, a União e Indústria representa um marco na modernização da pavimentação e do país. Sua construção envolveu o le- vantamento de capital em Londres e no Rio de Janeiro. Da antiga estrada ainda restam pontes e construções, incluindo o Museu Rodoviário, onde se pode aprender mais sobre a história da estrada em questão e do rodoviarismo brasileiro. A estrada original está hoje alterada e absorvida em alguns trechos pela BR-040/RJ. Durante o Império (1822-1889) foram poucos os desenvolvimentos nos transportes do Brasil, principalmente o transporte rodoviário. No início do século XX, havia no país 500km de estradas com revestimento de macadame hidráulico ou variações, sendo o tráfego restrito a veículos de tração animal (Prego, 2001). Em 1896 veio da Europa para o Brasil o primeiro veículo de carga. Em 1903 foram licenciados os primeiros carros particulares e em 1906 foi criado o Ministério da Viação e Obras Públicas. Em 1909 o automóvel Ford modelo T foi lançado nos Estados Unidos por Henry Ford, sendo a Ford Motor Company instalada no Brasil em 1919. Em 1916 foi realizado o I Congresso Na- cional de Estradas de Rodagem no Rio de Janeiro. Em 1928 foi inaugurada pelo presidente Washington Luiz a Rodovia Rio-São Paulo, com 506km de extensão, representando um marco da nova política rodoviária federal. Em 1949, quando da entrega da pavimentação de mais um trecho da que era conhecida como BR-2, a rodovia passou a se chamar Presidente Dutra. Também em 1928 foi inau- gurada pelo presidente a Rio-Petrópolis. Destaca-se em 1937 a criação, pelo presidente Getúlio Vargas, do Departamento Nacional de Estradas de Rodagem (DNER), subordinado ao Ministério de Viação e Obras Públicas. Na década de 1940 observou-se um avanço de pavimentação fruto da tecnolo- gia desenvolvida durante a 2ª Guerra Mundial. Em 1942, houve o contato de engenhei- ros brasileiros com engenheiros norte-americanos que construíram pistas de aeroportos e estradas de acesso durante a guerra utilizando o então recém-desenvolvido ensaio Figura 1.6 Estrada União e Indústria – foto à época de sua construção (Concer, 1997) 19Introdução California Bearing Ratio (CBR). Neste ano o Brasil possuía apenas 1.300km de rodovias pavimentadas, uma das menores extensões da América Latina. O grande impulso na construção rodoviária brasileira ocorreu nas décadas de 1940 e 1950, graças à criação do Fundo Rodoviário Nacional (FRN) em 1946, oriundo do im- posto sobre combustíveis líquidos. Destaque-se ainda a criação da Petrobras em 1953. O ano de 1950 foi destacado por Prego (2001) como o início da execução de pavimen- tos em escala industrial e da organização de grandes firmas construtoras. Anteriormente, embora já existisse o Laboratório Central do DNER, não havia ainda procedimentos amplamente aceitos para a aplicação das tecnologias rodoviárias. Isto tanto é verdadeiro que a pavimentação da Presidente Dutra, em 1950, foi feita sem estudo geotécnico, com espessuras constantes de 35cm, sendo 20cm de base de macadame hidráulico e 15cm de um revestimento de macadame betuminoso por penetração dosado pela regra “a quantidade de ligante é a que o agregado pede”. Em alguns trechos se adotou pavi- mento de concreto de cimento Portland. Registre-se, contudo, já nesta obra os esforços de alguns engenheiros para implantação de métodos de projeto e controle. Na década de 1950 foi feito um programa de melhoria das estradas vicinais, incluindo a abertura e melhoramento de estradas no Nordeste como forma de aliviar a precária si- tuação dessa região castigada por secas periódicas. Em 1955 entrou em funcionamento a fábrica de asfalto da Refinaria Presidente Bernardes da Petrobras, com capacidade de 116.000t/ano. Em 1956, a indústria automobilística foi implantada no país. O governo de Juscelino Kubitschek (1956-1961) impulsionou o rodoviarismo aumentando sobrema- neira a área pavimentada do país. Em 1958 e 1959, foram criados, respectivamente, o Instituto de Pesquisas Rodoviárias (IPR), no âmbito do CNPq, atuando em colaboração com o DNER, e a Associação Brasileira de Pavimentação (ABPv). Brasília foi inaugurada em 1960. Durante o governo militar (1964-1984), entre os projetos de estradas de destaque estão a Rodovia Transamazônica e a Ponte Rio-Niterói. Em 1985, o Brasil contava com aproximadamente 110.000km de rodovias pavimentadas, saltando em 1993 para apro- ximadamente 133.000km, conforme indica a evolução da rede rodoviária ilustrada na Tabela 1.1, que não inclui a rede viária municipal, responsável pela grande malha não-pa- vimentada no país. Números de 2005 apontam 1.400.000km de rodovias não-pavimen- tadas (federais, estaduais e municipais) e 196.000km de rodovias pavimentadas, sendo 58.000km federais, 115.000km estaduais e 23.000km municipais. Esse percentual (de cerca de 10% de vias pavimentadas) contrasta com um percentual nos Estados Unidos e na Europa de mais de 50% e de uma média na América do Sul superior a 20%. Para ilustrar o atraso do país em relação aos investimentos na área de infra-estrutura, principalmente na pavimentação, em 1998 o consumo de asfalto por ano nos Estados Unidos era de 27 milhões de toneladas. À mesma época, no Brasil, esse consumo era de cerca de 2 milhões de toneladas por ano, sendo em 2004 de 1,3 milhão. Levando-se em consideração que os dois países têm áreas semelhantes, de 9,8 e 8,5 milhões de km2, res- pectivamente, fica clara a condição precária de desenvolvimento do país neste aspecto. 20 Pavimentação asfáltica: formação básica para engenheiros O programa de concessões no país iniciou-se em 1996 e essas vêm apresentando qualidade superior quando comparadas às vias não-concessionadas, numa clara indica- ção de que há tecnologia no país para produção de vias duráveis e de grande conforto ao rolamento. 1.3 SITUAÇÃO ATUAL DA PAVIMENTAÇÃO NO BRASIL Levantamentos recorrentes da Confederação Nacional do Transporte – CNT têm conside- rado a grande maioria dos pavimentos do Brasil de baixo conforto ao rolamento, incluindo muitos trechos concessionados da malha federal. Estima-se de 1 a 2 bilhões de reais, por ano, para manutenção das rodovias federais. Acredita-se que seriam necessários R$ 10 bilhões para recuperação de toda a malha viária federal. Nas últimas décadas, o investi- mento em infra-estrutura rodoviária se encontra bem aquém das necessidades do país, havendo uma crescente insatisfação do setor produtivo com esse nível de investimento. Observa-se que os bens produzidos no país podem ser mais competitivos na fase de produ- ção, mas perdem competitividade, notadamente, no quesito infra-estrutura de transportes, devido a uma matriz modal deficiente, onde as estradas (principal meio de escoamento da produção nacional) encontram-se em estado tal que não são capazes de atender as ne- cessidades de transporte de carga nacionais. Essa realidade nos torna pouco competitivos no mercado exterior e cria uma situação econômica nacional insustentável. Segundo dados do Geipot, 2001, aproximadamente 60% do transporte de cargas realizado no Brasil é rodoviário. O modal ferroviário responde por 21%, o aquaviário por 14%, o dutoviário por 5% e o aéreo por menos de 1%. O modal de transporte rodoviário encontra-se em parte em estado deficiente, sendo os investimentos nas rodovias priori- FEDERAL ESTADUAL Ano Pavimentada Não- pavimentada Total Pavimentada Não- pavimentada Total 1960 8.675 23.727 32.402 4.028 71.847 75.875 1965 12.589 22.003 34.592 13.835 81.003 94.838 1970 24.146 27.394 51.540 24.431 105.040 129.471 1975 40.190 28.774 68.964 20.641 86.320 106.961 1980 39.685 19.480 59.165 41.612 105.756 147.368 1985 46.455 14.410 60.865 63.084 100.903 163.987 1990 50.310 13.417 63.727 78.284 110.769 189.053 1993 51.612 13.783 65.395 81.765 110.773 192.538 Fonte: Geipot 1970, 1976, 1981, 1986, 1992, 2001 TABELA 1.1 EVOLUÇÃO DA REDE RODOVIáRIA FEDERAL E ESTADUAL (kM) 23Introdução estado das vias no país. Para que essa discussão seja conseqüente é necessário o en- volvimento efetivo dos diversos elementos da cadeia produtiva da pavimentação asfáltica (produtores e distribuidores de asfalto, fábricas de emulsão, fornecedores de agregados, órgãos rodoviários, empresas de construção pesada, consultoras etc.). Compondo essa cadeia estão as universidades, atuando em três vertentes fundamentais: (i) ensino, por meio da formação de pessoal; (ii) pesquisa, através do avanço do conhecimento e apro- fundamento do entendimento dos fenômenos que regem o comportamento dos materiais de pavimentação e dos pavimentos em serviço; (iii) extensão, por meio da prestação de serviços não-convencionais para solução de problemas específicos. Esses três aspectos – pessoal, conhecimento, serviços especializados – são vitais para uma eficiente cadeia produtiva. No que diz respeito à formação de pessoal, o país é hoje ainda carente de bibliografia consolidada e didática que apresente os conceitos fundamentais da área de pavimentação, em particular dos revestimentos asfálticos. Espera-se que a presente iniciativa contribua para a formação de uma massa crítica em todo o país de modo a possibilitar discussões e ações coordenadas para a pesquisa e o desenvolvimento das diversas tecnologias de pavimentação asfáltica. 24 Pavimentação asfáltica: formação básica para engenheiros BIBLIOGRAFIA CITADA E CONSULTADA ADAM, J-P. Roman building: materials and techniques. London: B.T. Batsford, 1994. BELY, L. The history of France. Paris: Éditions Jean-Paul Gisserot, 2001. BITTENCOURT, E.R. Caminhos e estradas na geografia dos transportes. Rio de Janeiro: Editora Rodovia, 1958. BOHONG, J. In the footsteps of Marco Polo. Beijing: New World Press, 1989. CHEVALLIER, R. Roman roads. Berkeley, California: UP, 1976. CONCER – COMPANHIA CONCESSÃO RODOVIÁRIA JUIZ DE FORA-RIO. Álbum da Es- trada União e Indústria. Rio de Janeiro: Edição Quadrantim G/Concer, 1997. GEIPOT – GRUPO EXECUTIVO DE INTEGRAÇÃO DA POLÍTICA DE TRANSPORTES. Anuário estatístico dos transportes. Ministério dos Transportes. 1970, 1976, 1981, 1986, 1992, 2001. HAGEN, V.W. A estrada do sol. São Paulo: Edições Melhoramentos, 1955. HISTÓRIA DAS RODOVIAS. 2004. Disponível em: <http://estradas.com.br>. Acesso em: 1/8/2006. KLUMB, R.H. Doze horas em diligência. Guia do viajante de Petrópolis a Juiz de Fora. Rio de Janeiro, 1872. MALLIAGROS, T.G.; FERREIRA, C.P. Investimentos, fontes de financiamento e evolução do setor de infra-estrutura no Brasil: 1950-1996. Rio de Janeiro: Escola de Pós- Graduação em Economia/FGV. Disponível em: <http://www2.fgv.br/professor/ferrei- ra/FerreiraThomas.pdf>. Acesso em: 15/2/2006. MARGARY, I. Roman roads in Britain. London: John Baker, 1973. MASCARENHAS NETO, J.D. Methodo para construir as estradas em Portugal. 1790. Edição fac-similada, impressa em 1985 a partir do original do Arquivo-Biblioteca do ex-Ministério das Obras Públicas. MEDINA, J. Mecânica dos pavimentos. 1. ed. Rio de Janeiro: Coppe/UFRJ, 1997. 380 p. PREGO, A.S.S. A memória da pavimentação no Brasil. Rio de Janeiro: Associação Brasi- leira de Pavimentação, 2001. SAUNIER, B.; DOLFUS, C.; GEFFROY, G. Histoire de la locomotion terrestre. v. II. Paris: L’Illustration, 1936. RIBAS, M.C. A história do Caminho do Ouro em Paraty. 2. ed. Paraty: Contest Produções Culturais, 2003. WILD, O. The silk road. 1992. Disponível em: <www.ess.uci.edu>. Acesso em: 1/8/2006. Pavimentação asfáltica: formação básica para engenheiros Índice de figuras e tabelas 1 intrOduÇÃO Figura 1.1 Estruturas de pavimentos 10 Figura 1.2 Ilustração do sistema de camadas de um pavimento e tensões solicitantes (Albernaz, 1997) 10 Figura 1.3 Vias romanas 14 Figura 1.4 Estrada do Mar (História das rodovias, 2004) 16 Figura 1.5 Resquícios do Caminho do Ouro ou Estrada Real e pavimentação urbana em Paraty, RJ 17 Figura 1.6 Estrada União e Indústria – foto à época de sua construção (Concer, 1997) 18 Tabela 1.1 Evolução da rede rodoviária federal e estadual (km) 20 Pavimentação asfáltica: formação básica para engenheiros carga de partícula, 86 desemulsibilidade, 89 determinação do pH, 92 10% de finos, 134, 139, 140 efeito do calor e do ar, 49 equivalente de areia, 132, 133, 153 espuma, 53 estabilidade à estocagem, 67, 72 flexão, 291, 303 mancha de areia, 430, 431, 432 pêndulo britânico, 430, 431 peneiração, 88 penetração, 42 placa, 266 ponto de amolecimento, 48 ponto de fulgor, 52, 53 ponto de ruptura Fraass, 54, 55 recuperação elástica por torção, 78, 79 resíduo por destilação, 90, 91 resíduo por evaporação, 90 sanidade, 143, 144 Schulze-Breuer and Ruck, 188, 271, 272, 273 sedimentação, 87 separação de fases, 72, 73 solubilidade, 49, 50 tenacidade, 73, 74, 75 tração direta, 108, 109 tração indireta, 308 Treton, 137, 138 viscosidade, 43, 45, 46, 91 envelhecimento, 49, 50, 51, 52, 108 escória de aciaria, 119, 355 escória de alto-forno, 119 escorregamento, 419, 420 especificação brasileira de asfalto diluído, 96, 97 especificação brasileira de emulsões asfálticas catiônicas, 84 especificação brasileira de emulsões asfálticas modificadas por polímero, 94, 95 especificação de emulsões asfál- ticas para lama asfáltica, 85 especificações para cimento asfáltico de petróleo, 60 espuma de asfalto, 53, 192, 474 estabilidade, 67, 72, 92, 121, 132, 222, 223, 288 estocagem, 33, 36, 37, 38, 67, 72, 376, 384 estufa de filme fino rotativo, 50, 51 estufa de película fina plana, 50, 51 EVA, 66, 67, 68 expressão de Duriez, 255 exsudação, 415, 416, 420 F fadiga, 288, 311, 312, 313, 315, 316, 445 feldspato, 117, 119 fendas, 117, 119 fibras, 172, 252 fíler, 120, 160 filtro de mangas, 380 fluência, 106, 222, 318 fluxo paralelo, 379, 383 forma dos agregados, 141, 142, 172 fórmula de Vogt, 254 fragilidade, 73 fresadoras, 189, 192 fresagem, 188, 190, 191, 468 fundação, 337 FWD, 445, 448, 450, 451, 452 G gabro, 118, 119 GB, 176, 179, 180 gel, 28, 30, 31 geogrelhas, 471 geossintéticos, 469 geotêxteis, 469, 470 gerência, 403, 413, 441 gnaisse, 117, 118, 362 graduação, 122, 123, 131, 159, 161, 169, 172, 183, 229, 264, 323 graduação aberta, 122, 159 graduação com intervalo, 172 graduação densa, 122, 159 graduação descontínua, 159 graduação do agregado, 159 graduação uniforme, 123 gráfico de Heukelom, 56, 57 granito, 117, 118, 119 grau de compactação, 389 grau de desempenho, 101, 259 grumos, 88, 89, 132, 213, 216 H hidrocarbonetos, 25, 27, 30, 33, 37 hidroplanagem, 429, 433 histórico, 11, 16 Hveem, 50, 291, 346 I IBP, 70, 80, 99, 291 IFI, 434 IGG, 415, 424, 427, 428, 429 IGI, 427, 428 impacto, 72, 127, 128, 205, 206, 448 imprimação, 97, 414 índice de atrito internacional, 434 índice de degradação após compactação Marshall, 139, 140 índice de degradação após compactação Proctor, 137 índice de degradação Washington, 136 índice de forma, 141, 264 índice de gravidade global, 415, 424, 428 índice de gravidade individual, 427, 428 índice de irregularidade internacional, 407 índice de penetração, 55, 56 índice de suporte Califórnia, 342 índice de susceptibilidade térmica, 41 IRI, 407, 408, 413 irregularidade, 404, 405, 407, 408, 409, 410, 411, 412, 413 irregularidade longitudinal, 407, 410 J juntas, 76, 469, 472 Índice remissivo de termos L lama asfáltica, 85, 185, 186, 187, 269, 277, 397 laterita, 119, 355, 362 ligantes asfálticos modificados com polímeros, 59, 63, 69, 473 limpeza, 132, 167, 386 Lottman, 143 LWT, 185, 187, 197, 198, 269, 270, 271, 275 M macadame betuminoso, 194, 195, 352 macadame hidráulico, 352, 353, 357 macadame seco, 353, 357, 358 macromoléculas, 59 macrotextura, 430, 432, 433 maltenos, 27, 30, 68 manutenção, 406, 407, 413, 441 manutenção preventiva, 406, 407, 441 massa específica, 53, 54, 144, 145, 148, 149, 237, 389, 390, 443 massa específica aparente, 146, 207, 208, 209 massa específica efetiva, 146, 211 massa específica máxima medida, 209, 211, 214 massa específica máxima teórica, 209 massa específica real, 145 materiais asfálticos, 10, 352 materiais estabilizados granulometricamente, 358 material de enchimento, 120, 185, 358 matriz pétrea asfáltica, 159, 168 Mecânica dos Pavimentos, 10, 339, 453 megatextura, 430 método Marshall, 205, 217, 227, 228 metodologia MCT, 359, 360, 361 microrrevestimento, 186, 269, 274, 397 microtextura, 430, 431 mistura asfáltica, 26, 157, 205, 373 misturas asfálticas drenantes, 179 módulo complexo, 104, 303, 305, 306 módulo de resiliência, 291, 294, 296, 297, 300, 301, 345, 346, 348, 349 módulo de rigidez, 106 módulo dinâmico, 304, 306 multidistribuidor, 395 O ondulações transversais, 415 osmometria por pressão de vapor, 28 oxidação, 34, 50 P panela, 415, 416, 422, 427 parafinas, 33, 58 partículas alongadas e achatadas, 150, 152, 153 PAV, 108 pavimentação, 10, 20, 25, 373, 403 pavimentos asfálticos, 9, 10, 337, 338, 365, 366, 367, 368, 441 pavimentos de concreto de cimento Portland, 9, 338 pavimentos flexíveis, 337, 415 pavimentos rígidos, 337 pedregulhos, 115, 116 pedreira, 124, 126 peneiramento, 88, 121, 122, 125 peneiras, dimensões, 122 penetração, 10, 42, 43, 55, 56, 58, 194, 343, 393, 443 penetrômetro de cone dinâmico, 345 percolação, 159, 165 perda ao choque, 137, 138 perda por umidade induzida, 328 perfilômetro, 408, 409 permeabilidade, 165, 166, 183 petróleo, 25, 33, 96 PG, 101, 102, 103, 259, 260 pH, 86, 92 pintura de ligação, 414, 420, 422 plastômeros, 65, 68 PMF, 183, 184, 253, 255 pó, 65, 76, 120, 132, 195, 198, 380 pó de pedra, 120, 184, 274 polimento, 117, 421, 433 ponto de amolecimento, 33, 48, 55, 100 ponto de amolecimento anel e bola, 48 pré-misturado, 10, 385, 468, 472 processo estocável, 76 processo seco, 76, 78, 80 processo úmido, 76 produção de asfalto, 27, 35, 36, 37, 38 propriedades físicas, 41, 126, 129 Q QI, 412, 413 quarteamento, 131, 132 quartzito, 118, 119 quartzo, 117, 118, 119 quociente de irregularidade, 412, 413 R raio de curvatura, 446, 447, 449, 454 RASF, 37, 178 recapeamento, 441, 468, 469, 470, 471, 472 reciclado, 116, 119, 261, 352, 355 reciclagem, 53, 99, 119, 188, 190, 191, 352, 441, 473, 474 reciclagem em usina, 191 reciclagem in situ, 191, 192, 474 reconstrução, 22, 406, 441 recuperação elástica, 69, 70, 71, 78, 79, 80, 300, 472 refino do petróleo, 33, 35, 36, 37, 38, 39 reforço, 9, 337, 339, 342, 352, 365, 424, 441, 453, 468 rejeitos, 352 remendo, 416, 422 reologia, 30, 259 reômetro de cisalhamento dinâmico, 103, 104 Pavimentação asfáltica: formação básica para engenheiros reômetro de fluência em viga, 103, 106 reperfilagem, 467, 468 resíduo, 34, 75, 87, 89, 90, 91, 120, 178, 355 resíduo de vácuo, 34, 36 resinas, 28, 30 resistência, 67, 133, 143, 150, 165, 176, 251, 302, 308, 327, 342, 351, 431 resistência à abrasão, 133, 134, 153, 264, 269 resistência à deformação permanente, 67, 150, 165, 179 resistência à fadiga, 67, 179 resistência à tração estática, 249, 288, 308 resistência à tração retida, 251 resistência ao atrito, 119, 140 resistência ao trincamento por fadiga, 178, 315 ressonância nuclear magnética, 28, 72 restauração, 176, 185, 188, 406, 407, 413, 441, 442, 463, 466, 467, 468 retorno elástico, 68, 70, 79 retroanálise, 452, 453, 454, 455, 456, 457 revestimento asfáltico drenante, 165 revestimentos asfálticos, 10, 157, 164, 205, 373, 473 revestimentos delgados, 165, 179, 473 RNM, 28, 72 rochas ígneas, 116, 117, 118 rochas metamórficas, 116 rochas sedimentares, 116 rolagem, 206, 390, 391, 392, 393 rolo compactador, 390, 391, 392, 393 rolos compactadores estáticos, 390 rolos compactadores vibratórios, 391 rolos de pneus, 390 RTFOT, 50, 51, 103, 108 ruído, 165, 172, 179, 435, 436, 437 ruptura da emulsão, 87, 92 RV, 36, 103 S SAMI, 472 SARA, 27, 28, 29 saturados, 27, 28, 30, 32 Saybolt-Furol, 46, 91, 219 SBR, 66, 92, 94 SBS, 65, 66, 67, 68, 69, 70, 95 Schellenberg, 252 secador, 377, 378, 379, 380, 383 secador de contrafluxo, 379 secador de fluxo paralelo, 379, 383 segmentos homogêneos, 463, 464, 465, 466 segregação, 120, 123, 130, 172, 386, 393, 423 segurança, 52, 97, 100, 403, 429 selagem de trincas, 466, 467 serventia, 404, 405, 406, 407, 409, 441 SHRP, 32, 100, 102, 120, 123, 150, 229, 230 silos frios, 377, 378 silos quentes, 381, 382 simuladores de laboratório, 317 simuladores de tráfego, 321, 457, 458, 459 sintético, 62, 134 SMA, 161, 168, 169, 170, 171, 172, 249, 250, 251, 252 sol, 30, 31 solo arenoso fino laterítico, 354, 360 solo-agregado, 358, 359 solo-areia, 354, 359 solo-brita descontínuo, 354, 359 solo-cal, 352, 356, 364 solo-cimento, 351, 352, 356, 363, 364 sub-base, 9, 337, 339, 342, 352 Superpave, 100, 103, 229, 232, 233, 236, 259 suscetibilidade térmica, 41, 55, 56 t tamanho máximo, 120, 131, 230 tamanho nominal máximo, 120, 164 teor de argila, 153 teor de asfalto, 162, 221, 224, 226, 234 teor de parafinas, 33, 58 teor de sílica, 119 termoplásticos, 62, 63, 64 textura superficial, 140, 166, 435 TFOT, 49, 50, 51 tipos de ligantes asfálticos, 40, 41 tipos de modificadores, 65 tipos de rochas, 118 transporte, 11, 12, 14, 18, 20, 384 tratamento superficial duplo, 192, 263, 395 tratamento superficial primário, 193, 195 tratamento superficial simples, 192, 194, 196, 263, 400 tratamento superficial triplo, 192, 263, 395 tratamentos superficiais, 180, 191, 193, 194, 393 triaxial com carregamento repetido, 317, 347, 348 trincamento, 9, 230, 350, 361, 406, 445, 469 trincamento por fadiga, 9, 150, 230, 315 trincas, 311, 354, 356, 415, 417, 418, 425, 467, 469, 472, 473 U usina asfáltica por batelada, 374, 381, 382 usina contínua, 383 usina de asfalto, 374 usina de produção, 374, 381, 382 usina gravimétrica, 374, 381 usinas asfálticas, 373, 379, 384 V valor de resistência à derrapagem, 172, 429, 430, 431 valor de serventia atual, 404, 406 vaso de envelhecimento sob pressão, 108 vibroacabadora de esteiras, 388 vibroacabadora de pneus, 387 Índice remissivo das bibliografias ASTM (1986) ASTM C496, 332 ASTM (1993) ASTM C 1252, 282 ASTM (1994) ASTM D5002, 282 ASTM (1995) ASTM D1856, 282 ASTM (1997) ASTM D5, 111 ASTM (1998) ASTM C702, 154 ASTM (1999) ASTM D4791, 154 ASTM (2000) ASTM D2041, 282 ASTM (2000) ASTM D2726, 282 ASTM (2000) ASTM D 1075-96, 154 ASTM (2000) ASTM D 4791-99, 282 ASTM (2000) ASTM D244, 111 ASTM (2000) ASTM D5840, 111 ASTM (2000) ASTM D5976, 111 ASTM (2000) ASTM D6521, 111 ASTM (2001) ASTM D2042, 111 ASTM (2001) ASTM D2170, 112 ASTM (2001) ASTM D2171, 112 ASTM (2001) ASTM D2172, 282 ASTM (2001) ASTM D4124, 112 ASTM (2001) ASTM D5581, 282 ASTM (2001) ASTM D5801, 112 ASTM (2001) ASTM D5841, 111 ASTM (2001) ASTM D6648, 112 ASTM (2001) ASTM E 965-96, 438 ASTM (2002) ASTM D 1754/97, 112 ASTM (2002) ASTM D1188, 282 ASTM (2002) ASTM D4402, 112 ASTM (2002) ASTM D6723, 112 ASTM (2002) ASTM D6816, 112 ASTM (2003) ASTM D3497-79, 332 ASTM (2003a) ASTM E 303-93 S, 438 ASTM (2004) ASTM D2872, 111 ASTM (2004) ASTM D6084, 112 ASTM (2004) ASTM D7175, 112 ASTM (2005) ASTM C 125, 154 ASTM C127, 154 ASTM C128, 282 ASTM D 113, 111 ASTM D 2007, 111 ASTM D 270, 111 ASTM D 36, 111 ASTM D 5329, 112 ASTM D 5858, 461 ASTM D 88, 111 ASTM D 92, 112 ASTM D 95, 111 ASTM D4748-98, 461 ASTM E102, 112 ASTM(2002) ASTM D402, 112 b Balbo, J.T. (1993), 369 Balbo, J.T. (2000), 332 Barksdale (1971), 332 Beligni, M., Villibor, D.F. e Cincer- re, J.R. (2000), 200 Bely, L. (2001), 24 Benevides, S.A.S. (2000), 332 Benkelman, A.C.; Kingham, R.I. e Fang, H.Y. (1962), 369 Bernucci, L.L.B. (1995), 369 Bernucci, L.B.; Leite, L.M. e Mou- ra, E. (2002), 332 Bertollo, S.A.M. (2003), 112 Bertollo, S.A.M., Bernucci, L.B., Fernandes, J.L. e Leite, L.M. (2003), 112 Bittencourt, E.R. (1958), 24 Bohong, J. (1989), 24 Bonfim, V. (2000), 200 Bonnaure, F., Gest, G., Gravois, A. e Uge, P. (1977), 332 Boscov, M.E.G. (1987), 369 Bottin Filho, I.A. (1997), 332 Bottura, E.J. (1998), 438 Brito, L.A.T (2006), 333 Brosseaud, Y. (2002), 438 Brosseaud, Y. (2002a), 200 Brosseaud, Y. (2002b), 201 Brosseaud, Y., Bogdanski, B., Car- ré, D., (2003), 201 Brosseaud, Y., Delorme, J-L., Hier- naux, R.(1993), 201 Buchanan, M.S.; Brown, E.R. (2001), 282 Bukowski, J.R. (1997), 282 C Cabral, G.L.L. (2005), 154 Camacho, J. (2002), 369 Carey Jr., W.N. e Irick, P.E. (1960), 438 Carey Jr., W.N.; Huckins, H.C. e Leathers, R.C. (1962), 438 Carneiro, F.L. (1943), 333 Carneiro, F.B.L.(1965), 461 Carpenter, S.H.; K.A. Ghuzlan, e S. Shen (2003) , 333 Castelo Branco, V.T.F., Aragão, F.T.S. e Soares, J.B. (2004), 282 Castro Neto, A.M. (1996), 282 Castro Neto, A.M. (2000), 282 Castro, C.A.A. (2003), 112 Centro de Estudios de Carreteras (1986), 333 Ceratti, J.A.P. (1991), 369 Chevallier, R. (1976), 24 Christensen, R.M. (1982), 333 CNT (2004), 333 Coelho, W. e Sória, M.H.A. (1992), 282 COMITEE ON TROPICAL SOILS OF ISSMFE (1985), 369 Concer (1997), 24 Cordeiro, W.R. (2006), 201 Corté, J.-F. (2001), 201 Costa, C.A. (1986), 201 Croney, D. (1977), 438 Cundill, M.A. (1991), 438 D DAER/RS-EL 108/01, 282 Dama, M.A. (2003), 112 Daniel, J.S. e Y.R. Kim (2002), 333 Daniel, J.S. e Y.R. Kim e Lee, H.J. (1998), 333 DERBA (1985), 201 DER-BA ES P 23/00, 201 DER-PR (1991), 402 DER-SP (1991), 369 Dijk, W.V. (1975), 333 DNC (1993), 112 DNC 733/1997 (1997), 112 DNER (1979) DNER PRO-10/79, 461 DNER (1979) DNER PRO-11/79, 461 DNER (1985) DNER PRO- 159/85, 461 Pavimentação asfáltica: formação básica para engenheiros DNER (1994), 112 DNER (1994) DNER-ME 138/94, 333 DNER (1994) DNER-IE 006/94, 154 DNER (1994) DNER-ME 053/94, 154 DNER (1994) DNER-ME 061/94, 461 DNER (1994) DNER-ME 063/94, 112 DNER (1994) DNER-ME 078/94, 154 DNER (1994) DNER-ME 086/94, 154 DNER (1994) DNER-ME 089/94, 154 DNER (1994) DNER-ME 093/94, 154 DNER (1994) DNER-ME 107/94, 282 DNER (1994) DNER-ME 117/94, 282 DNER (1994) DNER-ME 133/94, 333, DNER (1994) DNER-ME 222/94, 154 DNER (1994) DNER-ME 24/94, 461 DNER (1994) DNER-PRO 08/94, 438 DNER (1994) DNER-PRO 269/94, 461 DNER (1994a) DNER-PRO 164/94, 438 DNER (1994b) DNER ME 228/94, 370 DNER (1994b) DNER-PRO 182/94, 438 DNER (1994c) DNER ME 256/94, 370 DNER (1994c) DNER-PRO 229/94, 438 DNER (1994d) DNER ME 258/94, 370 DNER (1995) DNER-EM 035/95, 154 DNER (1995) DNER-ME 043/95, 282 DNER (1995) DNER-ME 084/95, 155 DNER (1996), 113 DNER (1996) DNER-ME 193/96, 283 DNER (1996) DNER-PRO 199/96, 155 DNER (1996) DNER-PRO 273/96, 461 DNER (1997), 283, 402 DNER (1997) DNER ME 367/97, 155 DNER (1997) DNER-ES 308/97, 201 DNER (1997) DNER-ES 309/97, 201 DNER (1997) DNER-ES 310/97, 201 DNER (1997) DNER-ES 311/97, 201 DNER (1997) DNER-ES 312/97, 201 DNER (1997) DNER-ES 313/97, 201 DNER (1997) DNER-ES 314/97, 201 DNER (1997) DNER-ES 317/97, 201 DNER (1997) DNER-ES 318/97, 201 DNER (1997) DNER-ES 319/97, 201 DNER (1997) DNER-ES 320/97, 201 DNER (1997) DNER-ME 054/97, 155 DNER (1997) DNER-ME 153/97, 283 DNER (1997) DNER-ME 197/97, 155 DNER (1997) DNER-PRO 120/97, 155 DNER (1997c) DNER ES 301/97, 370 DNER (1997d) DNER ES 303/97, 370 DNER (1997e) DNER ES 304/97, 370 DNER (1997f) DNER ES 305/97, 370 DNER (1997g) DNER ME 254/97, 370 DNER (1998), 113, 283 DNER (1998) DNER-ME 035/98, 155 DNER (1998) DNER-ME 081/98, 155 DNER (1998) DNER-ME 083/98, 155 DNER (1998) DNER-ME 096/98, 155 DNER (1999) DNER-ES 386/99, 201 DNER (1999) DNER-ES 387/99, 201 DNER (1999) DNER-ES 388/99, 475 DNER (1999) DNER-ES 389/99, 202 DNER (1999) DNER-ES 390/99, 202 DNER (1999) DNER-ME 382/99, 201 DNER (1999) DNER-ME 383/99, 333 DNER (1999) DNER-ME 397/99, 155 DNER (1999) DNER-ME 398/99, 155 DNER (1999) DNER-ME 399/99, 155 DNER (1999) DNER-ME 400/99, 155 DNER (1999) DNER-ME 401/99, 155 DNIT (2003) DNIT 005-TER, 439 DNIT (2003) DNIT 006-PRO, 439 DNIT (2003c) DNIT 009-PRO, 439 DNIT (2004) DNIT 031/04-ES, 155 DNIT (2005), 155 DNIT (2005) DNIT 034/05-ES, 202 DNIT (2005) DNIT 035/05-ES, 202 DNIT (2006), 370 DNIT(2005) DNIT 032/05-ES, 202 DNIT(2005) DNIT 033/05-ES, 202 Índice remissivo das bibliografias Duque Neto, F.S, (2004), 202 Duque Neto, F.S., Motta, L.M.G. e Leite, L.F.M. (2004), 202 E EN 12591 (2000), 113 EN 12593 (2000), 113 EN 12697-5 (2002), 283 Epps, Jª., Sebaaly, P.E., Penaran- da, J., Maher, M.R. Mccann, M.B. e Hand, A.J. (2000), 333 Epps, J.A. e C.L. Monismith (1969), 333 Espírito Santo, N.R. e Reis, R.M. (1994), 283 f Falcão, M.F.B. e Soares, J.B. (2002), 333 Fernandes Jr., J.L. e Barbosa, R.E. (2000), 439 Fernandes, C.G. (2004), 155 Ferry, J.D. (1980), 333 FHWA (1994), 283 FHWA (1995), 283 Finn, F.N., Monismith, C.L. e Makevich, N.J. (1983), 334 Fonseca, O.A. (1995), 334 Fortes, R.M. e Nogami, J.S. (1991), 370 Francken, L.; Eustacchio, E.; Isacsson, U e Partl, M.N. (1997), 283 Francken, L. e Partl, M.N. (1996), 334 Fritzen, M.A (2005), 202 g GEIPOT (1981), 24, 439 Ghuzlan, K.A. e Carpenter, S.H. (2000), 334 Gillespie, T.D.; Sayers, M.W. e Segel, L. (1980), 439 Girdler, R.B. (1965), 113 Godoy, H. (1997), 370 Godoy, H. ; e Bernucci, L.L.B. (2002), 370 Gonçalves, F.P., Ceratti, J.A.P. (1998), 461 Gontijo, P.R.A. (1984), 402 Goodrich, J.L. (1991), 334 Gouveia, L.T. (2002), 155 Guimarães, A.C.R. e Motta, L.M.G. (2000), 155 H Haas, R. Hudson, W.R e Za- niewski, J. (1994), 439 Hafez, I.H. e Witczak, M.W. (1995), 283 Hagen, V.W. (1955), 24 Harman, T.; Bukowski, J.R.; Mou- tier, F.; Huber, G.; McGennis, R. (2002), 283 Hawkes, I. e Mellor, M. (1970), 334 Heide J.P.J. e J.C. Nicholls (2003), 283 Henry, J. (2000), 439 Heukelom, W. (1969), 113 Hill, J.F. (1973), 334 Hinrichsen, J. (2001), 283 História das Rodovias (2004), 24 Hondros, G. (1959), 334 Huang, Y.H. (1993), 334 Huang, Y.H. (2003), 461 Hunter, R.N. (2000), 113 Hveem, F. N (1955), 334 Hveem, F. N.; Zube, E.; Bridges, R.; Forsyth, R. (1963), 113 I IA (Instituto do Asfalto, versão em português) (2001), 113 IBP (1999), 113 Instituto do Asfalto (1989), 283 IPR (1998), 155 ISSA (2001), 202 ISSA (2005), 202 ISSA (2005a), 202 ISSA TB-100 (1990), 284 ISSA TB-109 (1990), 284 ISSA TB-114 (1990), 284 ISSA TB-145 (1989), 283 J Jackson, N.M. e Czor, L.J. (2003), 284 Jooste, F.J.; A. Taute; B.M.J.A. Verhaeeghe; A.T. Visser e O.A. Myburgh (2000), 284 K Kandhal, P.S. e Koehler, W.S. (1985), 284 Kandhal, P.S. e Brown, E.R. (1990), 284 Khandal, P. e Foo, K.Y. (1997), 284 Kim, Y.R. e Y.C. Lee (1995), 334 Kim, Y.R., H.J. Lee e D.N. Little (1997), 334 Kim, Y.R.; D.N. Little e F.C. Ben- son (1990)’’, 334 Kleyn, E. G. (1975), 370 Klumb, R.H. (1872), 24 l Lama, R.D. e Vutukuri, V.S. (1978), 334 Láo, V.L.E.S.T. (2004), 439 Láo, V.L.E.S.T. e Motta, L.M.G. (2004), 439 Larsen, J. (1985), 202 LCPC (1976), 113 LCPC (1989), 402 Lee, H.J. e Kim, Y.R. (1998), 334 Leite, L.F.M (1999), 113 Leite, L.F.M (2003), 113 Leite, L.F.M. & Tonial, I.A. (1994), 113 Leite, L.F.M., Silva, P., Edel, G., Motta, L.M. e Nascimento L. (2003), 113 Lentz, R.W. and Baladi, G.Y. (1980), 370 Liberatori, L.A. (2000), 113 Little, D.N.; R.L. Lytton; D. Willia- ms e R.Y. Kim (1999)’’, 334 Livneh, M (1989), 371 Loureiro, T.G. (2003), 334 Lovato, R.S. (2004), 371 Love, A.E.H. (1944), 334 Luong, M.P. (1990), 334 Lil PETROBRAS |. HS=cR ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DISTRIBUIDORAS DE ASFALTOS AVIMEN! TAÇA ASFALTIC « Formação Básica para Engenheiros . Liedi Bariani Bernucci Laura Maria Goretti da Motta Jorge Augusto Pereira Ceratti Jorge Barbosa Soares Currículo resumido dos professores do PROASFALTO: Laura Maria Goretti da Motta Engenheira Civil (1976), pela Universidade Federal de Juiz de Fora (UFJF), Mestre em Engenharia Civil (1979), pela Coordenação dos Programas de Pós-graduação em Engenharia (COPPE) da Universidade Federal do Rio de Janeiro (UFRJ) e Doutora pela COPPE/UFRJ, 1991. Professora Adjunta do Programa de Engenharia Civil da COPPE/UFRJ desde 1984. Coordena desde 1994 o Setor de Pavimentos do Laboratório de Geotecnia da COPPE. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Possui diversos trabalhos publicados no Brasil e exterior. Já orientou mais de 50 mestres e doutores. Já atuou em mais de 40 projetos de cooperação com empresas e órgãos do setor de pavimentação. Liedi Bariani Bernucci Engenheira Civil pela Escola Politécnica da Universidade de São Paulo (1981), especialização no Instituto de Geotécnica da Escola Politécnica Federal de Zurique na Suiça (1984 e 1985), Mestre em Engenharia de Solos pelo Departamento de Estruturas e Geotécnica da EPUSP (1987), estágio de Doutoramento pelo Instituto de Geotécnica da Escola Politécnica Federal de Zurique, na Suíça (1987 e 1988), - Doutora em Engenharia de Transportes pelo Departamento de Engenharia de Transportes da EPUSP (1995), Livre-Docente em Engenharia de Transportes pela EPUSP (2001). Professora Titular no Departamento de Engenharia de Transportes da EPUSP, Coordenadora do Laboratório de Tecnologia de Pavimentação da EPUSP e Chefe do Departamento de Engenharia de Transportes da EPUSP, atua como docente em graduação e pós-graduação, como coordenadora de diversos projetos de pesquisa e extensão. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. E consultora em pavimentação, o possui diversas publicações e já formou diversos R mestres e doutores em Transportes. * Engenheiro Civil pela Universidade Federal do ;, Ceará (1992). Mestre (1994) e Ph.D. (1997) em, E Engenharia Civil pela Texas A&M University. Coordenador da Pós-Graduação em Engenharia * de Transportes da UFC. Coordenador do * Laboratório de Mecânica dos Pavimentos da UFC * a e da REDE ASFALTO N/NE. Professor Associado do Departamento de Engenharia de Transportes « da UFC, atua como docente em graduação e pós- graduação e na coordenação de projetos de pesquisa e capacitação junto a agências de fomento, empresas e órgãos do setor de pavimentação. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Atua também como consultor e possui diversas publicações nos principais periódicos e congressos técnico/científicos nacionais e internacionais na área de pavimentação. Jorge Augusto Pereira Ceratti Engenheiro Civil pela Universidade Federal do Rio Grande do Sul (UFRGS), 1976, Mestre em Engenharia Civil pela Universidade Federal do Rio Grande do Sul (UFRGS), 1979. Doutor em Engenharia Civil pela Coordenação dos Programas de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro (COPPE/UFRJ), 1991. Professor Associado no Departamento de Engenharia Civil da UFRGS, onde atua como docente em graduação e pós- graduação, tendo formado, desde 1981, diversos mestres e doutores em Engenharia Civil. Coordenador do Laboratório de Pavimentação da UFRGS. É membro da Comissão de Asfaltos do Instituto Brasileiro do Petróleo e Gás. Atua como consultor em pavimentação, desenvolvendo projetos de cooperação com empresas e órgãos do setor de pavimentação. Possui diversas publicações nos principais periódicos e congressos técnico/científicos, nacionais e internacionais, na área de pavimentação. APRESENTAÇÃO tendo em vista a necessidade premente de melhoria da qualidade das rodovias brasileiras e a importância da ampliação da infra-estrutura de transportes, a Pe- tróleo Brasileiro S.A., a Petrobras distribuidora S.A. e a Associação Brasileira das empresas distribuidoras de Asfaltos – Abeda vêm investindo no desenvolvimento de novos produtos asfálticos e de modernas técnicas de pavimentação. Para efeti- vamente aplicar estes novos materiais e a recente tecnologia, é preciso promover a capacitação de recursos humanos. Assim, essas empresas, unidas em um empreendimento inovador, conceberam uma ação para contribuir na formação de engenheiros civis na área de pavimenta- ção: o Proasfalto – Programa Asfalto na universidade. este projeto arrojado foi criado para disponibilizar material didático para aulas de graduação de pavimentação visan- do oferecer sólidos conceitos teóricos e uma visão prática da tecnologia asfáltica. Para a elaboração do projeto didático, foram convidados quatro professores de renomadas instituições de ensino superior do Brasil. iniciou-se então o projeto que, após excelente trabalho dos professores Liedi Bariani Bernucci, da universidade de São Paulo, Laura Maria Goretti da Motta, da universidade Federal do Rio de Janei- ro, Jorge Augusto Pereira Ceratti, da universidade Federal do Rio Grande do Sul, e Jorge Barbosa Soares, da universidade Federal do Ceará, resultou no lançamento deste importante documento. o livro Pavimentação Asfáltica descreve os materiais usados em pavimentação e suas propriedades, além de apresentar as técnicas de execução, de avaliação e de restauração de pavimentação. A forma clara e didática como o livro apresenta o tema o transforma em uma excelente referência sobre pavimentação e permite que ele atenda às necessidades tanto dos iniciantes no assunto quanto dos que já atuam na área. A universidade Petrobras, co-editora do livro Pavimentação Asfáltica, sente-se honrada em participar deste projeto e cumprimenta os autores pela importante ini- ciativa de estabelecer uma bibliografia de consulta permanente sobre o tema. Petróleo Brasileiro S.A. – Petrobras Petrobras distribuidora S.A. – Asfaltos Abeda – Associação Brasileira das empresas distribuidoras de Asfaltos PReFáCio 7 1 Introdução 9 1.1 PAViMento do Ponto de ViStA eStRutuRAL e FunCionAL 9 1.2 uM BReVe hiStÓRiCo dA PAViMentAção 11 1.3 SituAção AtuAL dA PAViMentAção no BRASiL 20 1.4 ConSideRAçÕeS FinAiS 22 BiBLioGRAFiA CitAdA e ConSuLtAdA 24 2 Ligantes asfálticos 25 2.1 intRodução 25 2.2 ASFALto 26 2.3 eSPeCiFiCAçÕeS BRASiLeiRAS 58 2.4 ASFALto ModiFiCAdo PoR PoLÍMeRo 59 2.5 eMuLSão ASFáLtiCA 81 2.6 ASFALto diLuÍdo 96 2.7 ASFALto-eSPuMA 97 2.8 AGenteS ReJuVeneSCedoReS 99 2.9 o PRoGRAMA ShRP 100 BiBLioGRAFiA CitAdA e ConSuLtAdA 110 3 Agregados 115 3.1 intRodução 115 3.2 CLASSiFiCAção doS AGReGAdoS 116 3.3 PRodução de AGReGAdoS BRitAdoS 124 3.4 CARACteRÍStiCAS teCnoLÓGiCAS iMPoRtAnteS doS AGReGAdoS PARA PAViMentAção ASFáLtiCA 129 3.5 CARACteRiZAção de AGReGAdoS SeGundo o ShRP 150 BiBLioGRAFiA CitAdA e ConSuLtAdA 154 SumáRiO 4 Tipos de revestimentos asfálticos 157 4.1 intRodução 157 4.2 MiStuRAS uSinAdAS 158 4.3 MiStuRAS IN SITU eM uSinAS MÓVeiS 185 4.4 MiStuRAS ASFáLtiCAS ReCiCLAdAS 188 4.5 tRAtAMentoS SuPeRFiCiAiS 191 BiBLioGRAFiA CitAdA e ConSuLtAdA 200 5 Dosagem de diferentes tipos de revestimento 205 5.1 intRodução 205 5.2 deFiniçÕeS de MASSAS eSPeCÍFiCAS PARA MiStuRAS ASFáLtiCAS 207 5.3 MiStuRAS ASFáLtiCAS A Quente 217 5.4 doSAGeM de MiStuRAS A FRio 253 5.5 MiStuRAS ReCiCLAdAS A Quente 256 5.6 tRAtAMento SuPeRFiCiAL 263 5.7 MiCRoRReVeStiMento e LAMA ASFáLtiCA 269 BiBLioGRAFiA CitAdA e ConSuLtAdA 281 6 Propriedades mecânicas das misturas asfálticas 287 6.1 intRodução 287 6.2 enSAioS ConVenCionAiS 288 6.3 enSAioS de MÓduLo 290 6.4 enSAioS de RuPtuRA 308 6.5 enSAioS de deFoRMAção PeRMAnente 316 6.6 enSAioS CoMPLeMentAReS 327 BiBLioGRAFiA CitAdA e ConSuLtAdA 332 7 Materiais e estruturas de pavimentos asfálticos 337 7.1 intRodução 337 7.2 PRoPRiedAdeS doS MAteRiAiS de BASe, SuB-BASe e ReFoRço do SuBLeito 339 7.3 MAteRiAiS de BASe, SuB-BASe e ReFoRço do SuBLeito 352 7.4 ALGuMAS eStRutuRAS tÍPiCAS de PAViMentoS ASFáLtiCoS 365 BiBLioGRAFiA CitAdA e ConSuLtAdA 369 8 Técnicas executivas de revestimentos asfálticos 373 8.1 intRodução 373 8.2 uSinAS ASFáLtiCAS 373 (Centro de Pesquisa da Petrobras), eng. ilonir Antonio tonial (Petrobras distribui- dora), eng. Armando Morilha Júnior (Abeda), Prof. dr. Glauco túlio Pessa Fabbri (escola de engenharia de São Carlos/universidade de São Paulo), Prof. Sérgio Armando de Sá e Benevides (universidade Federal do Ceará) e Prof. álvaro Vieira (instituto Militar de engenharia). A experiência de escrever este livro a oito mãos foi deveras enriquecedora, construindo-o em camadas, com materiais convencionais e alternativos, cuida- dosamente analisados, compatibilizando-se sempre as espessuras das camadas e a qualidade dos materiais. no livro, competências e disponibilidades de tempo foram devidamente dosadas entre os quatro autores. um elemento presente foi o uso de textos anteriormente escritos pelos quatro autores em co-autoria com seus respectivos alunos e colegas de trabalho, sendo estes devidamente referen- ciados. Por fim, tal qual uma estrada, por melhor que tenha sido o projeto e a execu- ção, esta obra está sujeita a falhas, e o olhar atento dos pares ajudará a realizar a manutenção no momento apropriado. o avanço do conhecimento na fascinante área de pavimentação segue em alta velocidade e, portanto, alguns trechos da obra talvez mereçam restauração num futuro não distante. novos trechos devem surgir. Aos autores e aos leitores cabe permanecer viajando nas mais diversas es- tradas, em busca de paisagens que ampliem o horizonte do conhecimento. Aqui, espera-se ter pavimentado mais uma via para servir de suporte a uma melhor compreensão da engenharia rodoviária. Que esta via estimule novas vias, da mesma forma que uma estrada possibilita a construção de outras tantas. os autores notA iMPoRtAnte: os quatro autores participaram na seleção do conteúdo, na organização e na redação de todos os onze capítulos, e consideram suas respec- tivas contribuições ao livro equilibradas. A ordem relativa à co-autoria levou em consideração tão somente a coordenação da produção do livro. 3.1 INTRODUÇÃO Este capítulo trata dos agregados utilizados em revestimentos asfálticos de pavimentos. Todos os revestimentos asfálticos constituem-se de associações de ligantes asfálticos, de agregados e, em alguns casos, de produtos complementares. Essas associações, quando executadas e aplicadas apropriadamente, devem originar estruturas duráveis em sua vida de serviço. Para que isso ocorra, deve-se conhecer e selecionar as propriedades que os agregados devem conter. São apresentados os conceitos básicos sobre agregados para que o engenheiro possa fazer uma escolha apropriada. De acordo com a norma ABNT NBR 9935/2005, que determina a terminologia dos agrega- dos, o termo agregado é definido como material sem forma ou volume definido, geralmente inerte, de dimensões e propriedades adequadas para produção de argamassas e de concreto. Woods (1960) define agregado como sendo uma mistura de pedregulho, areia, pedra britada, escória ou outros materiais minerais usada em combinação com um ligante para formar um concreto, uma argamassa etc. Para conhecer o desempenho potencial dos agregados, é importante considerar como são formados e o que aconteceu com eles desde então. Antes de serem utilizados em um revestimento asfáltico, é importante lembrar que eles já existem há milhões de anos (tempo geológico). Uma vez associados com ligantes asfálticos, como parte de uma es- trutura de pavimento, seu desempenho deve ser considerado em termos de tempo em engenharia, que em obras de pavimentação é medido em anos ou décadas. Os ensaios de laboratório e a experiência prática devem indicar como uma rocha que existe há milhões de anos irá se comportar durante sua vida de projeto em um pavimen- to. Esse é o objetivo dos ensaios de desempenho. O agregado escolhido para uma determinada utilização deve apresentar propriedades de modo a suportar tensões impostas na superfície do pavimento e também em seu interior. O desempenho das partículas de agregado é dependente da maneira como são produzidas, mantidas unidas e das condições sob as quais vão atuar. A escolha é feita em laboratório onde uma série de ensaios é utilizada para a predição do seu comportamento posterior quando em serviço. Agregado é um termo genérico para areias, pedregulhos e rochas minerais em seu es- tado natural ou britadas em seu estado processado. Há ainda de se considerar também os agregados artificiais como discutido mais adiante. 3 Agregados 116 Pavimentação asfáltica: formação básica para engenheiros 3.2 CLASSIFICAÇÃO DOS AGREGADOS O nível de desempenho em serviço de um determinado agregado depende também das propriedades geológicas da rocha de origem. São importantes, portanto, informações so- bre o tipo de rocha, sua composição mineralógica, sua composição química, sua granu- lação, seu grau de alteração, sua tendência à degradação, abrasão ou fratura sob tráfego e o potencial de adesão do ligante asfáltico em sua superfície. A variedade de agregados passíveis de utilização em revestimentos asfálticos é muito grande. Contudo, cada utilização em particular requer agregados com características específicas e isso inviabiliza muitas fontes potenciais. Os agregados utilizados em pavimentação podem ser classificados em três grandes grupos, segundo sua (i) natureza, (ii) tamanho e (iii) distribuição dos grãos. 3.2.1 Quanto à natureza Quanto à natureza, os agregados são classificados em: natural, artificial e reciclado. Natural – Inclui todas as fontes de ocorrência natural e são obtidos por processos con- vencionais de desmonte, escavação e dragagem em depósitos continentais, marinhos, estuários e rios. São exemplos os pedregulhos, as britas, os seixos, as areias etc. Ou seja, os agregados naturais podem ser empregados em pavimentação na forma e tamanho como se encontram na natureza, ou podem ainda passar por processamentos como a britagem. Os agregados provenientes de rochas naturais pertencem a um de quatro tipos princi- pais, que são ígneos, sedimentares, metamórficos ou areias e pedregulhos: l rochas ígneas são aquelas que se solidificaram de um estado líquido e apresentam composição química, granulação, textura e modos de ocorrência muito variáveis. Al- guns tipos são resultantes de esfriamento lento de grandes massas no interior da crosta terrestre, resultando, por exemplo, em granitos e dioritos de granulação grossa. Outros tipos são extrusivos, provenientes de fluxos de lava para a superfície da Terra, resultando em rochas de granulação fina, como os basaltos; l rochas sedimentares são tipicamente formadas pelo intemperismo e erosão de rochas preexistentes, e seu resultado transportado pela ação da água, vento ou gelo. São caracterizadas por camadas estratificadas, originadas pelos processos de deposição. Elas podem ser formadas também por precipitação química de minerais dissolvidos em água, como é o caso do calcário; l rochas metamórficas ocorrem como resultado de alteração por aquecimento, pressão ou atividade química de rochas ígneas ou sedimentares existentes e compõem um grupo bastante complexo de rochas; l areias e pedregulhos são agregados naturais, provenientes das rochas de que são originários e dos processos de transporte sofridos antes da deposição. 119Agregados TAbELA 3.2 CLASSIFICAÇÃO DE ROChAS QUANTO AO TEOR DE SíLICA pRESENTE (mETSO mINERALS, 2005) Classificação % Sílica Quartzo Exemplo Ácida > 65 Presente Granito, riolito, quartzito Neutra 52 a 65 Pouco ou inexistente Sienito, diorito Básica 45 a 52 Raríssimo Basalto, gabro Ultrabásica < 45 Inexistente, feldspato escasso Piroxenito Em algumas regiões do país onde existe falta de material rochoso, um dos principais materiais alternativos utilizados na construção rodoviária são as concreções lateríticas, obtidas por peneiramento e, às vezes, complementadas por lavagem. Conforme Guimarães e Motta (2000), denomina-se no meio rodoviário brasileiro de laterita a um solo concrecionado enriquecido com óxidos hidratados de ferro ou alumínio, tendo a caulinita como argilo-mineral predominante, com coloração vermelha, amarela, marrom ou alaranjada. Nogami e Villibor (1995) citam que as lateritas contêm também freqüentemente a magnetita, a ilmenita, a hematita e, sobretudo, o quartzo; e ainda aler- tam para um dos problemas da laterita que é a grande variação de propriedades, o que dificulta a previsão de comportamento. Em misturas asfálticas, empregam-se preferencialmente as lateritas lavadas, resul- tantes do processo de separação dos agregados graúdos desse material, maiores que 4,8mm. O processo de lavagem da laterita é semelhante ao processo de extração de areia dos rios. Em vez de se dragar o fundo do rio, draga-se um tanque onde a lateri- ta bruta é previamente depositada por caminhões basculantes. Após ser depositada, a laterita sofre uma pré-lavagem com mangueiras de pressão e o material é em seguida dragado do fundo do tanque através de tubos, sendo conduzido a um peneirador, onde a granulometria desejada é obtida. Artificial – São resíduos de processos industriais, tais como a escória de alto-forno e de aciaria, ou fabricados especificamente com o objetivo de alto desempenho, como a argila calcinada (Cabral, 2005) e a argila expandida. O tipo de agregado artificial atualmente mais utilizado em pavimentação são os vários tipos de escórias, subprodutos da indústria do aço. Elas podem apresentar problemas de expansibilidade e heterogeneidade, requerendo tratamento adequado para utilização, porém podem apresentar alta resistência ao atrito. Reciclado – Nessa categoria estão os provenientes de reuso de materiais diversos. A reciclagem de revestimentos asfálticos existentes vem crescendo significativamente em importância e em alguns países já é a fonte principal de agregados. A possibilidade de uti- lização de agregados reciclados vem crescendo em interesse por restrições ambientais na 120 Pavimentação asfáltica: formação básica para engenheiros exploração de agregados naturais e pelo desenvolvimento de técnicas de reciclagem que possibilitam a produção de materiais reciclados dentro de determinadas especificações existentes para utilização. Destaca-se também a utilização crescente de resíduo de cons- trução civil em locais com ausência de agregados pétreos ou mesmo em áreas urbanas que possuam pedreiras, como forma de reduzir os problemas ambientais de disposição destes resíduos (Fernandes, 2004). 3.2.2 Quanto ao tamanho Os agregados são classificados quanto ao tamanho, para uso em misturas asfálticas, em graúdo, miúdo e material de enchimento ou fíler (DNIT 031/2004 – ES): l graúdo – é o material com dimensões maiores do que 2,0mm, ou seja, retido na pe- neira no 10. São as britas, cascalhos, seixos etc.; l miúdo – é o material com dimensões maiores que 0,075mm e menores que 2,0mm. É o material que é retido na peneira de no 200, mas que passa na de abertura no 10. São as areias, o pó de pedra etc.; l material de enchimento (fíler) – é o material onde pelo menos 65% das partículas é menor que 0,075mm, correspondente à peneira de no 200, e.g., cal hidratada, cimen- to Portland etc. O tamanho máximo do agregado em misturas asfálticas para revestimentos pode afetar essas misturas de várias formas. Pode tornar instáveis misturas asfálticas com agregados de tamanho máximo excessivamente pequeno e prejudicar a trabalhabilidade e/ou provocar segregação em misturas asfálticas com agregados de tamanho máximo excessivamente grande. A norma ASTM C 125 define o tamanho máximo do agregado em uma de duas formas: l tamanho máximo – é a menor abertura de malha de peneira através da qual passam 100% das partículas da amostra de agregado. Na metodologia SHRP-Superpave o tamanho máximo do agregado é definido como a abertura de malha imediatamente maior do que a correspondente ao tamanho nominal máximo; l tamanho nominal máximo – é a maior abertura de malha de peneira que retém algu- ma partícula de agregado, mas não mais de 10% em peso. Na metodologia SHRP-Su- perpave o tamanho nominal máximo é definido como a abertura de malha de peneira imediatamente maior do que a da primeira peneira a reter mais de 10% do material. O material passante na peneira de no 200 vem sendo designado como pó (dust em in- glês) (Motta e Leite, 2000) para distingui-lo da definição do DNIT de fíler. Essa distinção está relacionada à possível incorporação de parcela dos finos no ligante em uma mistura asfáltica. Na metodologia SHRP-Superpave há inclusive limites para a relação pó/teor de ligante, como será visto no Capítulo 5. Quando a porcentagem de pó aumenta, reduzem-se os vazios do esqueleto mineral e aumenta-se a trabalhabilidade da mistura asfáltica até certo ponto. Acima de um deter- 121Agregados minado teor, o pó começa a prejudicar a trabalhabilidade bem como a estabilidade do esqueleto mineral, diminuindo os contatos entre as partículas grossas, alterando também a capacidade de compactação da mistura. Se a maior parte do pó tiver partículas maiores que 0,040mm, elas vão atuar como preenchedoras dos vazios do esqueleto mineral. As partículas menores do que 0,020mm atuarão no ligante asfáltico, incorporando-se a este e compondo um filme de ligante, denominado mástique, que envolverá as partículas maiores de agregado. 3.2.3 Quanto à distribuição dos grãos A distribuição granulométrica dos agregados é uma de suas principais características e efetivamente influi no comportamento dos revestimentos asfálticos. Em misturas asfál- ticas a distribuição granulométrica do agregado influencia quase todas as propriedades importantes incluindo rigidez, estabilidade, durabilidade, permeabilidade, trabalhabilida- de, resistência à fadiga e à deformação permanente, resistência ao dano por umidade induzida etc. (ver no Capítulo 6). A distribuição granulométrica dos agregados é determinada usualmente por meio de uma análise por peneiramento. Nessa análise uma amostra seca de agregado é fraciona- da através de uma série de peneiras com aberturas de malha progressivamente menores, conforme ilustrado na Figura 3.1. Uma vez que a massa da fração de partículas retida em cada peneira é determinada e comparada com a massa total da amostra, a distribuição é expressa como porcentagem em massa em cada tamanho de malha de peneira. Figura 3.1 Ilustração da análise por peneiramento 124 Pavimentação asfáltica: formação básica para engenheiros Em função de seu preparo, algumas frações de agregados obtidos por britagem rece- bem denominações específicas, regionais, na prática da pavimentação, tais como: brita corrida, pedrisco, granilha etc. 3.3 pRODUÇÃO DE AGREGADOS bRITADOS As características físicas dos agregados como resistência, abrasão e dureza são deter- minadas pela rocha de origem. Entretanto, o processo de produção nas pedreiras pode afetar significativamente a qualidade dos agregados, pela eliminação das camadas mais fracas da rocha e pelo efeito da britagem na forma da partícula e na graduação do agre- gado (Marques, 2001). Normalmente nas pedreiras existe uma camada de solo e de rocha alterada sobre- jacentes que devem ser removidas antes que a rocha sã seja encontrada. Essa parte superficial e não-aproveitável na produção de britas é designada como “estéril”. 3.3.1 Operação de britagem O propósito básico da exploração de uma pedreira é o desmonte da rocha sã por meio de explosivos e, utilizando uma série de britadores e outras unidades, reduzir o material de modo a produzir os agregados utilizáveis na execução de um pavimento. Também é desejável produzir agregado britado que tenha formato cúbico e não achatado ou alonga- do. Segundo Roberts et al. (1996) as unidades de britagem são escolhidas para atender os seguintes objetivos: l reduzir os tamanhos dos blocos de rocha; l produzir formas e tamanhos desejados de agregados; l ter capacidade compatível com as cargas envolvidas para permitir seu manuseio; l minimizar a ocorrência de entupimentos e colmatação nas unidades durante a ope- ração; l requerer um mínimo de pessoal; l satisfazer exigências de britagem sem a necessidade de estágios de britagem adicio- nais e equipamentos auxiliares; l minimizar a demanda de energia por tonelada de agregado produzida; l não haver desgaste excessivo dos componentes metálicos; l operar economicamente com um mínimo de manutenção; e l permitir uma vida de serviço longa. A Figura 3.3 mostra o esquema do processo de operação em uma instalação de bri- tagem que usa um britador de mandíbula como britador primário e um britador de cone como secundário. 125Agregados A rocha após seu desmonte é transportada para o britador por um caminhão, confor- me mostrado na Figura 3.4. O material mais fraco normalmente se quebra em pequenos pedaços que são removidos antes da britagem. A operação de britagem pode ser descrita de forma simplificada como segue. O britador de mandíbula (primário) quebra a rocha em tamanhos que possam ser trabalhados pelos outros britadores. A Figura 3.5 mostra um exemplo de britador primário. Após a britagem primária, os agregados são selecionados em vários tamanhos por peneiramento. O material maior que 1” (25,4mm) é colocado no brita- dor de cone para britagem adicional. O material menor que 1” e maior que 3/4” (19mm) é estocado. O material menor que 3/4” é levado para um segundo peneirador para separações futuras. O material maior que 3/4” retorna ao britador de cone para nova britagem. O mate- rial menor que 3/4” é peneirado e estocado em três pilhas separadas: material entre 3/4” e 3/8” (9,5mm), entre 3/8” e n° 4 (4,8mm), e menor que 4,8mm. A maioria das operações nas instalações de britagem apresenta maior complexidade que a descrita, ou apresenta procedimentos diferentes, porém a operação é sempre feita com britadores e peneiradores. Outras centrais apresentam a capacidade de lavar os agregados em certos pontos da opera- ção (Marques, 2001). A Figura 3.6 mostra uma vista geral de uma instalação de britagem. Durante a operação de britagem é essencial que as propriedades do produto final sejam homogêneas. Quando a rocha é removida de várias localizações na pedreira, as Figura 3.3 Esquema simplificado do processo de britagem (Roberts et al., 1996) 126 Pavimentação asfáltica: formação básica para engenheiros propriedades físicas dos agregados podem variar substancialmente. O controle de qua- lidade durante as operações de britagem deve assegurar que as propriedades físicas dos agregados não variem excessivamente. O ideal é que a quantidade de material que alimenta as operações de britagem seja aproximadamente constante. O aumento da vazão de fluxo de material nos britadores, normalmente resulta em mais transbordamento de agregado mais fino sobre as peneiras. Esse excesso resulta em um estoque de material mais fino. O britador primário produz uma redução mecânica inicial de 8” (200mm) para 1” (25,4mm). Os britadores secundário e terciário reduzem os agregados até o tamanho desejado. Figura 3.4 Carregamento de um caminhão na pedreira (a) vista superior (b) vista lateral Figura 3.5 Exemplo de britador primário 129Agregados 3.4 CARACTERíSTICAS TECNOLÓGICAS ImpORTANTES DOS AGREGADOS pARA pAvImENTAÇÃO ASFÁLTICA Os revestimentos asfálticos modernos constituem um material composto formado por agregados de vários tamanhos e proporções mantidos unidos por um ligante asfáltico. Seu nível de desempenho será tanto melhor quanto maior for o entendimento de como seus constituintes reagem juntos sob as condições prevalecentes em um pavimento. Existe uma elaborada série de fatores que atuam conjuntamente para produzir uma es- trutura com desempenho adequado. A seleção de agregados para utilização em revestimentos asfálticos depende de sua disponibilidade, custo e qualidade, bem como do tipo de aplicação. Segundo Roberts et al. (1996) são as propriedades físicas dos agregados que determinam principalmente a adequação para o uso em misturas asfálticas e em menor extensão as propriedades químicas. São propriedades físicas e mecânicas básicas: a resistência, a porosidade e a densidade. Propriedades físico-químicas tais como umidade, adesividade e, em conse- qüência, descolamento da película de asfalto são função da composição e da estrutura dos minerais no agregado, entre outros fatores. As propriedades químicas dos agregados têm pequeno efeito no seu desempenho, exceto quando afetam a adesividade do ligante asfáltico ao agregado e a compatibilidade com aditivos antidescolamento que podem ser incorporados ao ligante asfáltico. Uma compreensão da mineralogia e identificação de minerais pode produzir informa- ções sobre propriedades físicas e químicas potenciais de um agregado para um determi- Figura 3.10 Redução mecânica por compressão e impacto em um britador de mandíbula que brita sem atrito (Roberts et al., 1996) 130 Pavimentação asfáltica: formação básica para engenheiros nado uso, e pode ajudar a evitar o uso de um agregado que tenha constituintes minerais nocivos. A aceitação dos agregados é definida pela análise de determinadas característi- cas, devendo-se proceder previamente à coleta de amostras de forma adequada. Amostras de agregados são normalmente tomadas em pilhas de estocagem, correias transportadoras, silos quentes (Capítulo 8) ou às vezes de caminhões carregados. Os técnicos responsáveis pela amostragem devem evitar a coleta de material que esteja segregado, quando obtido de pilhas de estocagem, caminhões ou silos. O melhor local para obter uma amostra é de uma correia transportadora. A largura total de fluxo na correia deve ser amostrada, uma vez que o agregado também segrega na correia (Mar- ques, 2001). Uma amostra representativa é formada pela combinação de um número de amos- tras aleatórias obtidas em um período de tempo (um dia para amostras em correias) ou tomando amostras de várias locações em pilhas de estocagem e combinando essas amostras. As amostras devem ser tomadas atentando-se para o efeito da segregação nas pilhas de estocagem. O agregado no fundo das pilhas é usualmente mais graúdo. O método mais utilizado para amostragem em uma pilha é escalar seu lado, entre o fundo e a ponta, remover uma camada superficial e obter uma amostra debaixo dessa superfície (Marques, 2001). A norma DNER-PRO 120/97 fixa as exigências para amostragem de agregados em campo. É indicado o material necessário para coleta de amostras (pá, enxada, lona, caixa de madeira, vassoura, etiqueta), as quantidades de amostras de agregados graúdos e miúdos para a realização de ensaios de caracterização e mecânicos, assim como os pro- cedimentos de coleta. São abordados os procedimentos de amostragem em silos, em pi- lhas de estocagem, em material espalhado na pista e em veículos. São descritos também as formas de embalagem e os itens de identificação da amostra (natureza, procedência, qualidade, data, local de coleta, responsável, finalidade etc.). Depois de tomadas as quantidades requeridas e levadas ao laboratório, cada amostra deve ser reduzida para o tamanho apropriado aos ensaios específicos, podendo-se usar para isso um separador ou proceder a um quarteamento. A norma ASTM C 702 descreve três métodos para reduzir amostras de agregados a tamanhos apropriados para ensaios aplicando técnicas cujos objetivos são minimizar as variações nas características medidas entre as amostras testadas e a amostra original. A norma DNER-PRO 199/96 fixa as condições exigíveis na redução de uma amostra de agregado formada no campo para ensaios de laboratório, onde são indicados vários procedimentos para reduzir amostras de agregados. Um dos procedimentos utiliza um separador mecânico que consiste de um aparelho com várias calhas de igual largura. O número de calhas pode variar de 8 (agregados graúdos) a 20 (agregados miúdos) que descarregam alternativamente em cada lado do separador. A Figura 3.11 mostra um separador mecânico de amostras. Consiste em se colocar a amostra original em uma bandeja e distribuir uniformemente sobre as calhas do separador, de tal forma que quando o material é introduzido nas calhas, uma quan- 131Agregados tidade aproximadamente igual deve fluir na parte inferior da calha. O material que for caindo em cada um dos receptáculos inferiores deverá ser reintroduzido na parte supe- rior das calhas tantas vezes quantas forem necessárias até reduzir a amostra original ao tamanho especificado pelo método de ensaio em questão. Deve-se reservar o material contido no outro receptáculo para redução de amostras para outros ensaios, quando forem requeridos. Outro procedimento é chamado de quarteamento. Consiste em se misturar a amostra original manualmente com uma pá sobre uma superfície limpa e plana formando uma pilha de formato cônico. Logo em seguida o cone é achatado formando um círculo com espessura constante. Esse círculo é então dividido em quatro quartos iguais. Removem- se dois quartos opostos de material, conforme a Figura 3.12. Os outros dois quartos opostos que sobraram são reunidos e um novo quarteamento é feito da mesma forma como descrito até aqui. Essa operação é repetida até se obter a quantidade necessária requerida pelo ensaio a realizar. Uma alternativa a esse procedimento é utilizar uma lona para depositar o material, quando a superfície do terreno for irregular. São descritas a seguir as características que são analisadas para aceitação de agre- gados para misturas asfálticas segundo a maioria das especificações e especialmente as do DNER/DNIT. 3.4.1 Tamanho e graduação O tamanho máximo do agregado e sua graduação são controlados por especificações que prescrevem a distribuição granulométrica a ser usada para uma determinada aplicação. Por exemplo, a espessura mínima de execução de uma camada de concreto asfáltico determina diretamente o tamanho máximo do agregado usado nessa mistura asfáltica. Figura 3.11 Equipamento separador mecânico de amostras (Foto: Marconi Equip. Ltda.) 134 Pavimentação asfáltica: formação básica para engenheiros Agregados localizados próximos ou na superfície do pavimento devem apresentar resis- tência à abrasão maior do que os localizados nas camadas inferiores. A tenacidade e resistência abrasiva são tratadas por algumas normas brasileiras, mes- mo que indiretamente, através das metodologias citadas a seguir. Nesses ensaios, os agregados são submetidos a algum tipo de degradação mecânica e medida a alteração provocada, principalmente na granulometria original, ao final da degradação. Dessa for- ma as características de tenacidade, resistência abrasiva e até mesmo de dureza dos agregados são presumidamente avaliadas (Marques, 2001). Em virtude das característi- cas de procedimentos serem semelhantes nesses ensaios, foram assim agrupados: l DNER-ME 035/98 Agregados – determinação da abrasão Los Angeles. l DNER-ME 197/97 Agregados – determinação da resistência ao esmagamento de agregados graúdos. l DNER-ME 096/98 Agregado graúdo – avaliação da resistência mecânica pelo método dos 10% de finos. l DNER-ME 397/99 Agregados – determinação do índice de degradação Washington – IDW. l DNER-ME 398/99 Agregados – determinação do índice de degradação após compac- tação Proctor IDP. l DNER-ME 399/99 Agregados – determinação da perda ao choque no aparelho Treton. l DNER-ME 401/99 Agregados – determinação do índice de degradação de rochas após compactação Marshall, com ligante – IDML e sem ligante – IDM. O ensaio comumente utilizado para medir a resistência à abrasão é o ensaio de abra- são Los Angeles. Nesse ensaio uma amostra de agregado de cerca de 5.000g (mi) é submetida a 500 ou 1.000 revoluções no interior do cilindro de um equipamento padro- nizado (Figura 3.14). Um número variado de esferas de aço, conforme a granulometria da amostra, é adicionado no cilindro, induzindo impactos nas partículas durante as suas revoluções. O resultado é avaliado pela redução de massa dos agregados retidos na pe- neira de no 12 (1,7mm) em relação à massa inicial da amostra especificada, conforme a expressão 3.2: (3.2) Os equipamentos e o procedimento são detalhados nas normas DNER-ME 035/98 para agregados pétreos e DNER-ME 222/94 para agregados sintéticos fabricados com argila. Os limites de aceitação para a abrasão Los Angeles dependem do tipo de aplica- ção do agregado e das exigências dos órgãos viários. Em revestimentos asfálticos, é de- sejável uma resistência ao desgaste relativamente alta, indicada por uma baixa abrasão no ensaio de abrasão Los Angeles. As especificações brasileiras que envolvem o uso de 135Agregados agregados em camadas de base e revestimento de pavimentos, normalmente limitam o valor da abrasão Los Angeles (LA) entre 40 e 55%. Agregados de algumas regiões do país, como por exemplo a região do município do Rio de Janeiro, apresentam o valor da abrasão Los Angeles muito acima de 55%, em alguns casos, chegando a 65%. Devido à impossibilidade de se encontrar agregados com esse parâmetro atendido nas proximidades da obra, muitas rodovias foram pavimentadas usando-se os agregados da região, embora estivessem em desacordo com a especifi- cação vigente, mas com a autorização do DNER ou órgão regional competente para tal procedimento (Marques, 2001). Em virtude dessa experiência e de outras em que agregados com abrasão Los Angeles acima do limite superior foram usados e o desempenho ao longo dos anos mostrou-se satisfatório quanto a esse parâmetro, o DNER passou a recomendar a execução de ou- tros ensaios a serem conduzidos nos agregados que apresentassem o valor de abrasão Los Angeles acima do limite superior especificado. A indicação desses ensaios assim como valores limites a serem adotados para os mesmos foram sugeridos em pesquisa do IPR-DNER (IPR, 1998). Esses ensaios são os seguintes: DNER-ME 397/99, DNER-ME 398/99, DNER-ME 399/99, DNER-ME 400/99 e DNER-ME 401/99. A norma DNER-ME 197/97 avalia o desempenho do material ao desgaste pelo atrito interno simulando no ensaio a compressão imposta pelos rolos compactadores durante a construção ou posteriormente, no próprio pavimento construído, sob ação do tráfego. O agregado, previamente peneirado e seco, é compactado por meio de um soquete, em três camadas com 25 golpes em cada. Em seguida determina-se a massa do corpo-de-prova (M). Ele deve ser submetido a uma carga uniforme de 400kN à razão de 40kN por minuto. Após esse carregamento, o corpo-de-prova é retirado e o material é peneirado na peneira Figura 3.14 Equipamento para ensaio de abrasão Los Angeles 136 Pavimentação asfáltica: formação básica para engenheiros 2,4mm. O material retido nessa peneira é determinado (Mf). A resistência do agregado ao esmagamento (R) é determinada pela expressão 3.3: (3.3) O procedimento descrito na norma DNER-ME 096/98 é semelhante ao anterior e consiste em se medir a força necessária para que um êmbolo atinja uma determinada penetração no corpo-de-prova, que varia dependendo da natureza da amostra. A norma DNER-ME 397/99 apresenta um método para determinar o índice de degra- dação Washington (IDW), em amostra de rocha britada obedecendo a uma faixa granu- lométrica padronizada entre as peneiras de 12,7mm (1/2”) e 2,0mm (nº 10). O material a ensaiar deve ser britado até passar na peneira de 12,7mm. Em seguida é lavado sobre a peneira de 2,0mm e seco em estufa até constância de massa. Separa-se 500g de material que passe na peneira de 12,7mm e fique retido na peneira de 6,4mm, e 500g de material que passe na peneira de 6,4mm e fique retido na peneira de 2,0mm. A amostra é então colocada em recipiente de plástico, juntamente com 200cm3 de água, tampado hermeticamente e colocado em um peneirador motorizado para promover agi- tação mecânica com 300 ± 5 oscilações por minuto por 20 minutos. Após a agitação, despeja-se a amostra e água sobre uma peneira de 2,0mm, sobreposta à peneira de 0,075mm (nº 200) e ambas colocadas sobre um funil sobre uma proveta graduada de 500ml. Lavam-se os agregados com água até que a marca de 500ml na proveta seja atingida pela água. Coloca-se em uma proveta 7ml de uma solução previamente preparada (cloreto de cálcio anidro, glicerina e solução de formaldeído a 40% em volume). Na proveta gra dua- da, faz-se com que o material retido na peneira nº 200 e a água de lavagem fiquem em suspensão, tampando a proveta com a mão e virando-a de cabeça para baixo e para cima, cerca de 10 vezes. Em seguida, despeja-se o líquido na proveta de equivalente de areia até a marca de 15” (381mm) e tampa-se com rolha de borracha. Agita-se a proveta do equivalente de areia, de forma semelhante ao descrito ante- riormente, cerca de 20 vezes em aproximadamente 35 segundos. Após essa agitação, coloca-se a proveta sobre a mesa, retira-se a rolha e aciona-se o cronômetro. Após 20 minutos anota-se a altura da coluna de sedimento (H) em polegadas, com precisão de 0,1” (2,54mm). O índice de degradação Washington é calculado pela expressão 3.4: (3.4) Os valores de IDW podem variar de 0 a 100, correspondendo os maiores valores aos melhores materiais. A expressão coloca os materiais duvidosos aproximadamente no meio da escala, estando os inadequados abaixo e os bons acima desse ponto. 139Agregados A norma DNER-ME 96/98 descreve uma outra forma de ensaio para avaliar indireta- mente a característica de qualidade de um agregado graúdo pela avaliação da resistência mecânica pelo método conhecido como dos 10% de finos. Consiste em se submeter uma porção de agregados passante na peneira de 12,5mm e retida na peneira de 9,5mm, em quantidade suficiente para preencher um cilindro padronizado, a um carregamento estático por meio de uma prensa capaz de aplicar cargas de no mínimo 500kN. Ao final desse carregamento faz-se novo peneiramento do material na peneira de 2,4mm, calcu- lando-se a porcentagem de quebra eventual. Varia-se a carga aplicada até se obter por interpolação aquela que provoca 10% de quebra de grãos. A Figura 3.16 mostra uma foto do conjunto de cilindro e êmbolo utilizado nesse ensaio e a prensa. A norma DNER-ME 401/99 estabelece o método pelo qual se determina o IDML e IDM – índice de degradação após compactação Marshall, com ligante e sem ligante, para agregados naturais rochosos, obedecendo a uma granulometria padrão, definida pelas peneiras de 25,0mm, 19,0mm, 9,5mm, 4,8mm, 2,0mm, 0,42mm e 0,075mm. A compactação é feita usando-se o soquete e o molde de compactação do ensaio Mar- shall (ver Capítulo 5). Os agregados são secos em estufa até constância de massa. Frações desses agrega- dos são pesadas de acordo com quantidades preestabelecidas conforme cada faixa gra- nulométrica, perfazendo um total de 1.200g ± 60g. São utilizados três corpos-de-prova para cada ensaio. Os agregados são aquecidos à temperatura de 28°C acima da temperatura de aque- cimento do ligante (ver Capítulo 5). Acrescentam-se 5% em peso de ligante aos agre- gados, misturando energicamente até o envolvimento completo dos mesmos. Coloca-se no molde Marshall a mistura de uma só vez. Aplica-se com soquete 50 golpes em cada face do corpo-de-prova. Após a confecção dos corpos-de-prova, é procedida a extração do ligante pelo método DNER-ME 053/94 ou similar. Os agregados resultantes do ensaio de extração são sub- metidos a um peneiramento nas mesmas peneiras utilizadas para confecção dos corpos- de-prova, sendo que a porcentagem passante é tomada em relação à massa original dos Figura 3.16 Conjunto de cilindro e êmbolo utilizado no ensaio de 10% de finos e prensa (Fotos: Miceli, 2006) 140 Pavimentação asfáltica: formação básica para engenheiros agregados. Calcula-se a porcentagem passante relativa a cada peneira e a porcentagem passante média das três amostras para cada peneira. Calcula-se também o valor D para cada peneira, correspondendo à diferença entre a média da granulometria após compac- tação e a granulometria original. O somatório das diferenças (∑D) também é calculado. O índice de degradação IDML é dado pela expressão 3.6: (3.6) O índice de degradação após compactação Marshall sem ligante (IDM) segue os mes- mos procedimentos anteriores, com exceção do aquecimento dos agregados e do uso de ligante. O cálculo do IDM também é feito da mesma forma que o IDML. Na Tabela 3.4 são apresentados os valores limites de aceitação sugeridos pelo IPR (1998). TAbELA 3.4 méTODOS DE ENSAIO pARA DETERmINAÇÃO DE CARACTERíSTICAS mECâNICAS DE AGREGADOS E vALORES DE ACEITAÇÃO (IpR, 1998) Métodos de Ensaio Valores Limites – Tentativa DNER-ME 35/94 – Agregado – determinação da abrasão Los Angeles LA ≤ 65% DNER-ME 399/99 – Agregados – determinação da perda ao choque no aparelho Treton T ≤ 60% DNER-ME 96/98 – Agregado graúdo – avaliação da resistência mecânica pelo método dos 10% de finos 10% finos ≥ 60kN DNER-ME 401/99 – Agregados – determinação do índice de degradação de rochas após compactação Marshall, com ligante – IDML e sem ligante – IDM IDML com ligante ≤ 5 IDM sem ligante ≤ 8 DNER-ME 398/99 – Agregados – determinação do índice de degradação após compactação Proctor – IDP IDP ≤ 6 DNER-ME 397/99 – Agregados – determinação do índice de degradação Washington – IDW IDW ≥ 30 DNER-ME 197/97 ou NBR 9938 – Agregados – determinação da resistência ao esmagamento de agregados graúdos E ≥ 60 3.4.4 Textura superficial A textura superficial dos agregados influi na trabalhabilidade, na adesividade, e na resis- tência ao atrito e ao cisalhamento das misturas asfálticas para pavimentação. À medida que aumenta a rugosidade do agregado, há uma tendência de perda de trabalhabilidade da mistura asfáltica e de crescimento da resistência ao cisalhamento dessa mistura, bem como do teor de ligante asfáltico de projeto. Não há um método consagrado para medir a textura superficial, embora existam procedimentos de avaliação indireta, conforme será visto mais adiante. 141Agregados 3.4.5 Forma das partículas A forma das partículas dos agregados influi na trabalhabilidade e resistência ao cisa- lhamento das misturas asfálticas e muda a energia de compactação necessária para se alcançar certa densidade. Partículas irregulares ou de forma angular tais como pedra britada, cascalhos e algumas areias de brita tendem a apresentar melhor intertravamento entre os grãos compactados, tanto maior quanto mais cúbicas forem as partículas e mais afiladas forem suas arestas. A forma das partículas é caracterizada pela determinação do índice de forma (f) em ensaio descrito no método DNER-ME 086/94. Esse índice varia de 0,0 a 1,0, sendo o agregado considerado de ótima cubicidade quando f = 1,0 e lamelar quando f = 0,0. É adotado o limite mínimo de f = 0,5 para aceitação de agregados quanto à forma. A Figura 3.17 mostra o equipamento utilizado para a determinação do índice de forma. A forma das partículas pode ser também caracterizada segundo a norma ABNT NBR 6954/1989, onde são medidas por meio de um paquímetro três dimensões das partículas: comprimento (a), largura (b) e espessura (c). Para a classificação segundo a forma são determinadas e relacionadas entre si as razões b/a e c/b, conforme indica a Tabela 3.5. As partículas são classificadas em cúbica, alongada, lamelar e alongada- lamelar. As fotos da Figura 3.18 ilustram as diferenças entre agregados de forma lamelar e cúbica. Figura 3.17 Exemplo de equipamento para determinação do índice de forma 144 Pavimentação asfáltica: formação básica para engenheiros magnésio, em cinco ciclos de imersão com duração de 16 a 18 horas, à temperatura de 21oC, seguidos de secagem em estufa. A perda de massa resultante desse ataque quími- co ao agregado deve ser de no máximo 12%. O método DNER-ME 089/94 apresenta o procedimento desse ensaio. A Figura 3.19 mostra os materiais utilizados nesse ensaio e um exemplo do resultado do teste. Figura 3.19 Exemplo de materiais utilizados no ensaio de sanidade e resultado 3.4.9 Densidade específica/massa específica Segundo Pinto (2000), as relações entre quantidade de matéria (massa) e volume são denominadas massas específicas, e expressas geralmente em t/m3, kg/dm3 ou g/cm3 e as relações entre pesos e volumes são denominados pesos específicos e expressos geralmente em kN/m3. A relação entre os valores numéricos que expressam as duas grandezas é constante. Por exemplo, se um material tem uma massa específica de 1,8t/m3, seu peso específico será o produto desse valor pela aceleração da gravidade, que varia conforme a posição no globo terrestre e que é de aproximadamente 9,81m/s2 ao nível do mar (em problemas de engenharia prática, adota-se simplificadamente 10m/s2). O peso específico será, por- tanto, de 18kN/m3. Ou seja, o peso (P) de uma massa de 1kg ao nível do mar onde a aceleração da gra- vidade é de 9,81m/s2 é: (b) Agregados antes do ensaio (c) Agregados após o ensaio (a) materiais para realização do ensaio 145Agregados P = 1kg × 9,81m/s2 = 9,81N ≈ 10N (3.7) Assim tem-se que 1N = 1kg m/s2. Então no exemplo citado tem-se: 1,8t/m3 ×10m/s2 = 18t/m2s2 = 18.000kg/m2s2× m/m = = 18.000kg m/m3s2 = 18.000N/m3 = 18kN/m3 (3.8) Segundo Pinto (2000), a expressão densidade, de uso comum na engenharia, refere- se à massa específica, e densidade relativa é a relação entre a densidade do material e a densidade da água a 4°C. Como esta é igual a 1kg/dm3, resulta que a densidade relativa tem o mesmo valor numérico que a massa específica (expressa em g/cm3, kg/dm3 ou t/m3), mas é adimensional. Como a relação entre o peso específico de um material e o peso específico da água a 4°C é igual à relação das massas específicas, é comum se estender o conceito de densidade relativa à relação dos pesos e adotar-se como peso específico a densidade relativa do material multiplicada pelo peso específico da água. No estudo de agregados, são definidas três designações de massa específica: real, aparente e efetiva, respectivamente correspondentes aos termos em inglês apparent specific gravity, bulk specific gravity e effective specific gravity. Observe-se que as tra- duções de apparent e bulk não são literais quando se consideram os parâmetros em questão, correspondendo aos termos real e aparente, respectivamente em português. Além disso, ressalte-se que specific gravity diz respeito a uma grandeza adimensional, enquanto density refere-se a uma grandeza com dimensão, portanto, o oposto ao que se usa no Brasil. De qualquer forma, quando se usa o sistema internacional de unidades, massa específica e densidade possuem o mesmo valor numérico, conforme exemplifica- do anteriormente. Massa específica real A massa específica real (Gsa), em g/cm3, é determinada através da relação entre a massa seca e o volume real (expressão 3.9). O volume real é constituído do volume dos sólidos, des- considerando o volume de quaisquer poros na superfície, conforme esquema da Figura 3.20. Figura 3.20 Esquema da partícula de agregado na determinação da Gsa 146 Pavimentação asfáltica: formação básica para engenheiros (3.9) Onde: Vol. real = volume da partícula sólida do agregado (área interna ao tracejado). Segundo o Asphalt Institute (1989), esse parâmetro considera somente o volume da partícula do agregado. Não inclui o volume de quaisquer poros ou capilares que são preenchidos pela água após embebição de 24 horas. Massa específica aparente A massa específica aparente (Gsb), em g/cm3, é determinada quando se considera o material como um todo (forma aparente), sem descontar os vazios. É determinada divi- dindo-se a massa seca pelo volume aparente do agregado (expressão 3.10), que inclui o volume de agregado sólido mais o volume dos poros superficiais contendo água. É medi- da quando o agregado está na condição superfície saturada seca (SSS), de acordo com o esquema da Figura 3.21. Esta condição em laboratório é obtida por remoção cuidadosa manual da água da superfície dos agregados com o uso de um tecido absorvente. (3.10) Onde: Vol. aparente = volume do sólido + volume do poro permeável à água (área interna ao tracejado). Massa específica efetiva A massa específica efetiva (Gse), em g/cm3, é determinada quando se trabalha com mis- turas asfálticas cujo teor de ligante asfáltico seja conhecido. É calculada através da relação entre a massa seca da amostra e o volume efetivo do agregado, conforme a expressão 3.11. O volume efetivo é constituído pelo volume do agregado sólido e o volume dos poros permeá veis à água que não foram preenchidos pelo asfalto, como mostra a Figura 3.22. A massa específica efetiva não é comumente medida diretamente, sendo freqüentemente tomada como a média entre a massa real e a aparente. Essa prática só é adequada quan- do o volume de poros superficiais é baixo, ou seja, para agregados de baixa absorção, ou seja, inferior a 2%. Figura 3.21 Esquema da partícula de agregado na determinação da Gsb 149Agregados Quando se trabalha com uma mistura de duas ou mais frações (ou dois ou mais agregados), pode-se computar um valor para a massa específica média através de um valor ponderado das várias frações (agregados) que constituem a mistura, pela expressão 3.15: (3.15) Onde: G = massa específica média; G1, G2, ..., Gn = massas específicas das frações (agregados) 1, 2, ..., n (aparente ou real); M1, M2, ..., Mn = massa das frações (agregados) 1, 2, ..., n; %1, %2, ..., %n = porcentagem das massas das frações (agregados) 1, 2, ..., n. Em relação aos valores de G1, G2, ..., Gn usados na expressão 3.15, quando se des- tina à dosagem de uma mistura asfáltica, Pinto (1998) recomenda que sejam obtidos pela média entre a massa específica real e a aparente para agregados graúdos e miúdos e pelo valor da massa específica real para o fíler mineral usado. No Capítulo 5 será dis- cutida ainda uma outra maneira de se levar em conta a porosidade dos agregados. Figura 3.25 Esquema do ensaio de massa específica de agregados miúdos considerando a absorção pelo método ASTm C 127 (Fotos: Mourão, 2003) 150 Pavimentação asfáltica: formação básica para engenheiros 3.5 CARACTERIZAÇÃO DE AGREGADOS SEGUNDO O ShRp Segundo pesquisadores do SHRP, há um consenso de que as propriedades dos agrega- dos têm influência direta no comportamento dos revestimentos asfálticos quanto a defor- mações permanentes, e afetam, embora em menor grau, o comportamento relacionado ao trincamento por fadiga e por baixas temperaturas. Esses pesquisadores identificaram duas categorias de propriedades dos agregados que devem ser consideradas: proprieda- des de consenso e propriedades de origem. 3.5.1 propriedades de consenso As propriedades designadas de consenso pelos pesquisadores do SHRP são aquelas consideradas de exigência fundamental para o bom desempenho dos revestimentos as- fálticos: angularidade do agregado graúdo; angularidade do agregado miúdo; partículas alongadas e achatadas; e teor de argila. Os valores especificados dessas propriedades também foram consensuais, ficando a critério de cada estado americano quaisquer exigências adicionais. Os critérios de aceitação são baseados no nível de tráfego, referido ao número equivalente de passa- gens de eixo padrão (N) determinado pela American Association of State Highway and Transportation Officials (AASHTO), e pela posição na estrutura do pavimento em que vai ser empregado o agregado. Materiais próximos à superfície e sujeitos a tráfego intenso demandam valores de propriedades de consenso mais restritivos. Angularidade do agregado graúdo A angularidade do agregado graúdo garante o atrito entre as partículas que propicia a re- sistência à deformação permanente. É definida como a porcentagem em peso de agrega- dos maiores do que 4,75mm com uma ou mais faces fraturadas. A Tabela 3.6 apresenta os valores mínimos necessários da angularidade do agregado graúdo em função do nível de tráfego e da posição em que vai ser utilizado na estrutura do pavimento. TAbELA 3.6 CRITéRIO DE DEFINIÇÃO DA ANGULARIDADE DO AGREGADO GRAúDO N (× 106) Repetições do eixo padrão Profundidade a partir da superfície < 100mm > 100mm < 0,3 55 / – – / – < 1 65 / – – / – < 3 75 / – 50 / – < 10 85 / 80 60 / – < 30 95 / 90 80 / 75 < 100 100 / 100 95 / 90 ≥ 100 100 / 100 95 / 90 “85 / 80” significa que 85% do agregado graúdo têm uma ou mais faces fraturadas e 80% têm duas ou mais faces fraturadas. – 151Agregados Angularidade do agregado miúdo A angularidade do agregado miúdo garante o atrito entre as partículas que propicia a resistência à deformação permanente. É definida como a porcentagem de vazios de ar presentes em agregados com tamanhos de partículas menores que 2,36mm, em uma condição de estado solto. Sua determinação é feita segundo o método ASTM C 1252. A Figura 3.26 mostra o equipamento utilizado, onde W é a massa de agregado miúdo que preenche um cilindro de volume conhecido V e Gsb é a massa específica real do agrega- do miúdo. Um estudo desse ensaio para algumas areias do estado de São Paulo foi feito por Gouveia (2002). As areias britadas em geral obedecem bem a essa exigência. A Tabela 3.7 apresenta os valores mínimos necessários da angularidade do agregado miúdo em função do nível de tráfego e da posição em que vai ser utilizado na estrutura do pavimento. Figura 3.26 Equipamento para determinação da angularidade do agregado miúdo (Fotos: Marques, 2001) (a) Esquema do ensaio (b) Colocação do material no funil (c) preenchimento do cilindro com o agregado miúdo (d) Retirada do excesso de material na superfície do cilindro 154 Pavimentação asfáltica: formação básica para engenheiros bIbLIOGRAFIA CITADA E CONSULTADA AASHTO – AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OF- FICIALS. AASHTO T 283/89: resistance of compacted bituminous mixture to moisture induced damage. USA, 1989. . AASHTO T 85: standard method of test for specific gravity and absorption of coarse aggregate. USA, 1991. ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6954: lastro padrão: de- terminação da forma do material. Rio de Janeiro, 1989. . NBR NM 52: agregado miúdo: determinação de massa específica e massa específi- ca aparente. Rio de Janeiro, 2003. . NBR NM 53: agregado graúdo: determinação de massa específica, massa específi- ca aparente e absorção de água. Rio de Janeiro, 2003. . NBR 9935: agregados: terminologia. Rio de Janeiro, 2005. ASTM – AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C 1252: standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture and grading). USA, 1993. . ASTM C 702: standard practice for reducing samples of aggregate to testing size. USA, 1998. . ASTM D 1075-96: standard test method for effects of water on compressive strength of compacted bituminous mixtures. USA, 2000. . ASTM D 4791-99: standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. USA, 2000. . ASTM C 127: standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. USA, 2004. . ASTM C 125: standard terminology relating to concrete and concrete aggregates. USA, 2005. ASPHALT INSTITUTE. The asphalt handbook. Manual series n. 4 (MS-4), 1989. . Superpave level 1 – mix design. Superpave Series n. 2 (SP-2), 1995. CABRAL, G.L.L. Metodologia de produção e emprego de agregados de argila calcinada para pavimentação. 2005. Dissertação (Mestrado) – Instituto Militar de Engenharia, Rio de Ja- neiro, 2005. DNIT – DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA DE TRANSPORTES. DNER- IE 006/94: materiais rochosos usados em rodovias: análise petrográfica. Rio de Janeiro, 1994. . DNER-ME 053/94: misturas betuminosas: percentagem de betume. Rio de Janeiro, 1994. . DNER-ME 078/94: agregado graúdo: adesividade a ligante betuminoso. Rio de Ja- neiro, 1994. . DNER-ME 086/94: agregado: determinação do índice de forma. Rio de Janeiro, 1994. . DNER-ME 089/94: agregados: avaliação da durabilidade pelo emprego de soluções de sulfato de sódio ou de magnésio. Rio de Janeiro, 1994. . DNER-ME 093/94: solos: determinação da densidade real. Rio de Janeiro, 1994. . DNER-ME 222/94: agregado sintético fabricado com argila: desgaste por abrasão. Rio de Janeiro, 1994. . DNER-ME 035/95: peneiras de malhas quadradas para análise granulométrica de solos. Rio de Janeiro, 1995. 155Agregados . DNER-ME 084/95: agregado miúdo: determinação da densidade real. Rio de Ja- neiro, 1995. . DNER-PRO 199: redução de amostras de campo de agregados para ensaio de labo- ratório. Rio de Janeiro, 1996. . DNER-ME 054/97: equivalente de areia. Rio de Janeiro, 1997. . DNER-PRO 120/97: coleta de amostras de agregados. Rio de Janeiro, 1997. . DNER-ME 197/97: agregados: determinação da resistência ao esmagamento de agregados graúdos. Rio de Janeiro, 1997. . DNER-ME 367/97: material de enchimento para misturas betuminosas. Rio de Ja- neiro, 1997. . DNER-ME 035/98: agregados: determinação da abrasão Los Angeles. Rio de Ja- neiro, 1998. . DNER-ME 081/98: agregados: determinação da absorção e da densidade de agre- gado graúdo. Rio de Janeiro, 1998. . DNER-ME 083/98: agregados: análise granulométrica. Rio de Janeiro, 1998. . DNER-ME 096/98: agregado graúdo: avaliação da resistência mecânica pelo méto- do dos 10% de finos. Rio de Janeiro, 1998. . DNER-ME 397/99: agregados: determinação do índice de degradação Washington – IDW. Rio de Janeiro, 1999. . DNER-ME 398/99: agregados: determinação do índice de degradação após com- pactação Proctor IDP. Rio de Janeiro, 1999. . DNER-ME 399/99: agregados: determinação da perda ao choque no aparelho Tre- ton. Rio de Janeiro, 1999. . DNER-ME 400/99: agregados: desgaste após fervura de agregado pétreo natural. Rio de Janeiro, 1999. . DNER-ME 401/99: agregados: determinação do índice de degradação de rochas após compactação Marshall, com ligante – IDML e sem ligante – IDM. Rio de Janeiro, 1999. . DNIT 031/04-ES: pavimentos flexíveis: concreto asfáltico. Rio de Janeiro, 2004. . Manual de pavimentação. 3. ed. Rio de Janeiro: DNIT/Instituto de Pesquisas Rodo- viárias, 2005. FERNANDES, C.G. Caracterização mecanística de agregados reciclados de resíduos de cons- trução e demolição dos municípios do Rio de Janeiro e de Belo Horizonte para uso em pavimentação. 2004. 109 f. Dissertação (Mestrado) – Coordenação dos Programas de Pós- graduação de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2004. GOUVEIA, L.T. Avaliação do ensaio de angularidade do agregado fino (FAA) da especificação Superpave. 2002. 139 f. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2002. GUIMARÃES, A.C.R.; MOTTA, L.M.G. Execução de revestimento asfáltico com agregado de laterita lavada no Acre. In: ENCONTRO DE ASFALTO, 13., 2000, Rio de Janeiro. Anais... Rio de Janeiro: IBP, 2000. p. 86-95. HUNTER, R.N. Asphalts in road construction. London: Thomas Telford Publishing, 2000. IPR – INSTITUTO DE PESQUISAS RODOVIÁRIAS. Estudos e pesquisas de rochas de pe- dreiras para estabelecimento de critérios de qualidade frente às normas e procedimentos existentes e sua aceitação. Relatório final. ECL – Engenharia, Consultoria e Economia S.A. Rio de Janeiro, 1998. MARQUES, G.L.O. Procedimentos de avaliação e caracterização de agregados minerais usa- dos na pavimentação asfáltica. Seminário de qualificação ao doutoramento – Coordenação 156 Pavimentação asfáltica: formação básica para engenheiros dos Programas de Pós-graduação de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2001. METSO MINERALS. Manual de britagem. 6. ed. São Paulo: Metso Brasil Indústria e Comércio Ltda., 2005. MOTTA, L.M.G.; LEITE, L.F.M. Efeito do fíler nas características mecânicas das misturas asfálticas. In: CONGRESSO PANAMERICANO DE ENGENHARIA DE TRÂNSITO E TRANS- PORTE, 11., 2000, Gramado. Anais... Rio de Janeiro: ANPET, 2000. p. 1.007-17. NOGAMI, J.S.; VILLIBOR, D. Pavimentação de baixo custo com solos lateríticos. São Paulo: Editora Vilibor, 1995. PINTO, C.S. Curso básico de mecânica dos solos. São Paulo: Oficina de Textos, 2000. PINTO, S. Materiais pétreos e concreto asfáltico: conceituação e dosagem. Rio de Janeiro: IME, 1998. ROBERTS, F.L.; KANDHAL, P.S.; BROWN, E.R.; LEE, D-Y.; KENNEDY, T.W. Hot mix asphalt materials, mixture design and construction. 2. ed. Lanham, Maryland: Napa Research and Education Foundation, 1996. SHELL. The Shell bitumen handbook. 5. ed. London: Shell Bitumen/Thomas Telford Publish- ing, 2003. WAPA – WASHINGTON ASPHALT PAVEMENT ASSOCIATION. The WAPA asphalt pavement guide. Washington, DC, 2004. WOODS, K.B. Highway engineering handbook. New York: McGraw Hill, 1960. SILVA, P.B. Estudo em laboratório e em campo de misturas asfálticas SMA 0/8S. 2005. 132 f. Dissertação (Mestrado) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2005. Pavimentação asfáltica: formação básica para engenheiros A AASHTO, 287, 306, 346, 404, 406, 464 abrasão, 116, 124, 133, 153, 187, 269, 273, 395 abrasão Los Angeles, 134, 140, 261, 273, 327, 357 absorção, 142, 149, 167, 216, 271, 435 aderência, 165, 179, 403, 429, 430, 483 adesão, 116, 187, 264, 273, 275, 280 adesividade, 64, 118, 143, 328, 421 afundamento de trilha de roda, 322, 417, 443 afundamentos, 322, 414, 416, 417, 419, 424, 442, 443, 445 agentes rejuvenescedores, 41, 99, 188, 190, 256, 473 agregado, 115, 207 artificial, 119 britado, 124 graúdo, 120, 132, 139, 142, 150, 152 miúdo, 85, 120, 148, 150, 151 natural, 99, 116 propriedades (ver propriedades dos agregados) reciclado, 116, 119, 351, 352, 355, 362 alcatrão, 25, 26 amostragem, 73, 130, 142, 387 amostragem de agregados, 130 análise granulométrica, 122, 132 análise petrográfica, 117 análise por peneiramento, 119, 121, 122, 125, 139 angularidade de agregado, 150, 151, 152, 240, 261 ângulo de fase, 104, 260, 290, 303 areia, 116, 119, 120, 141, 151, 164, 174, 341, 354, 356, 363, 430 areia-asfalto, 174, 253, 328 areia-cal-cinza volante, 356 argila, 132, 143, 150, 153, 340, 341, 354, 358, 360, 363 argila calcinada, 119, 134 argila expandida, 119 aromáticos, 27, 30, 37, 51, 64 asfaltenos, 27, 30, 32, 68, 176 asfalto, 25, 27, 30, 34, 41, 58, 100 asfalto-borracha, 75, 162, 165, 172, 302, 324, 377 asfaltos diluídos, 81, 96 asfalto-espuma, 38, 41, 97, 441 asfalto modificado por polímeros, 59, 63, 67, 69, 92, 162, 174, 377, 472 asfalto natural, 26 composição química, 27 especificação brasileira, 58, 61, 83, 94, 95, 96, 97, 99 especificação européia, 62 especificação SHRP, 32, 100, 102, 103 produção, 32, 33, 34, 39 programa SHRP, 100 propriedades físicas-ensaios, 41 coesividade Vialit, 72 densidade relativa, 53 durabilidade, 49 dutilidade, 49 espuma, 53 estabilidade à estocagem, 72 fragilidade e tenacidade, 73 massa específica, 53 penetração, 42 ponto de amolecimento, 48 ponto de fulgor, 52 ponto de ruptura Fraass, 54 recuperação elástica, 70 reômetro de cisalhamento dinâmico, 104 reômetro de fluência em viga (BBR), 106 retorno elástico, 70 separação de fases, 72 suscetibilidade térmica, 55 solubilidade, 49 tração direta (DTT), 108 vaso de envelhecimento sob pressão (PAV), 108 viscosidade, 43 avaliação, 403, 441 de aderência em pistas molhadas, 429 estrutural, 9, 441, 463 funcional, 9, 403, 441, 463 objetiva, 424 subjetiva, 404, 409 B “bacia de deflexão, bacia de deformação”, 445, 452 basalto, 116, 118, 119, 142, 143 base (camada de pavimento), 176, 183, 194, 337, 339 base asfáltica, 176 BBM, BBME, BBTM, BBUM, 176, 177, 179, 180, 181, 182 betume (ver asfalto), 25, 26, 49 bica corrida, 353, 357 bombeamento de finos, 416, 423 borracha (ver asfalto-borracha), 59, 62, 63, 65, 75 brita graduada simples, 352, 353, 357 ÍNDICE REMISSIVO DE tERMOS Índice remissivo de termos brita graduada tratada com cimento, 352, 356, 362 britador, 124, 127 britagem, 124 Brookfield, 47 buraco (panela), 415, 416, 422, 425 C camada(s) “de base; de sub-base”, 352 “de dissipação de trincas (de absorção de trincas; anti- reflexão de trincas)”, 468, 469 de módulo elevado, 162, 165, 176 de reforço do subleito, 337, 339 de rolamento (ver revestimento asfáltico), 9, 162, 176, 468, 473 de revestimento intermediárias, 9, 162, 179, 183, 187, 253, 472 intermediárias de alívio de tensões, 472 porosa de atrito (ver revesti - mento drenante), 159, 161, 165, 253, 328, 434, 468 superficiais de revestimentos delgados, 165, 179, 473 caminhão espargidor, 393, 396 Cannon-Fenske, 44, 45 Cannon-Manning, 44, 45 CAP (cimento asfáltico de petróleo) (ver asfalto) capa selante, 183, 193, 395 cimento asfáltico de petróleo (ver asfalto) classificação de agregados, 116, 119, 142 classificação de asfaltos, 41, 43, 60, 100 classificação de defeitos, 415 classificação de solos, 340, 341 classificação de textura, 430, 432 coesão (coesividade), 49, 72, 187, 194, 271, 338, 342, 352 coletores de pó (filtros de manga), 380 compactação, 389 compactador giratório (Superpave), 230, 232 compatibilidade, 66, 67, 72, 129, 271 compressão, 10, 127, 195, 289, 308, 311, 330, 338, 350, 352, 470 compressão uniaxial não-confinada (creep), 317 concreto asfáltico, 158, 159, 161, 162, 217, 302, 432, 468 concreto asfáltico de módulo elevado, 162, 165, 176, 302, 311, 352 concreto asfáltico delgado, 177, 178 concreto asfáltico denso, 161, 162 cone de penetração dinâmico (DCP), 345, 443, 444 contrafluxo, 379, 383, 384 corrugação, 415, 416, 420, 425, 427 creep, 106, 317, 318, 319, 320, 321 cura, 96, 254, 351, 363, 364, 397, 399 curva de Fuller, 229 curvas granulométricas (ver granulometria), 123, 261 D DCP (dynamic cone penetrometer cone de penetração dinâmico), 345, 444 defeitos de superfície, 413, 414, 415, 416 deflexão, 346, 443, 445, 446, 448, 454, 463, 464 deformação, 43, 49, 104, 105, 304, 313, 315, 443 deformação permanente (ver afundamento em trilha de roda), 316, 317, 320, 321, 322, 443 degradação, 133, 134, 137, 139 densidade (ver massa específica) específica, 144 específica Rice, 210 máxima medida, 209 máxima teórica, 209 relativa, 53, 145, 147 densímetro com fonte radioativa, 390 densímetro eletromagnético, 390 desagregação (ver desgaste, descolamento, stripping), 415, 416, 421, 422 descolamento, 129, 419, 421 desempenho, 101, 373, 401, 403, 441, 442, 457 desgaste, 134, 135, 327, 415, 416, 421, 423 deslocamento, 289, 291, 297, 298, 299, 300, 301, 318, 321, 346, 348, 421, 443, 445, 446 diorito, 118, 119 distribuidor de agregados, 197, 393 dosagem, 157, 205, 217, 227, 229, 253, 256, 258, 259, 266, 269, 274, 277 dosagem ASTM, 217, 235 dosagem de misturas asfálticas recicladas a quente, 256 dosagem Marshall, 206, 217, 224, 227 dosagem Superpave, 229, 233, 259 drenagem superficial, 264, 407 DSC, 33, 58 DSR, 104, 105 DTT, 108, 109 durabilidade, 49 dureza, 124, 134, 178 dureza dos agregados, 134 E elastômeros, 62, 63 EME, 162, 165, 176, 178, 179, 180, 181, 182 emulsão aniônica, 81, 84, 85 emulsão asfáltica, 81, 82, 83, 84, 92, 93 emulsão catiônica, 81, 82, 84 endurecimento, 34, 49, 52, 108 endurecimento do ligante asfáltico, 34, 51, 52 ensaio azul-de-metileno, 187, 275, 279 bandeja, 266, 267 Cântabro, 167, 253, 328 Pavimentação asfáltica: formação básica para engenheiros carga de partícula, 86 desemulsibilidade, 89 determinação do pH, 92 10% de finos, 134, 139, 140 efeito do calor e do ar, 49 equivalente de areia, 132, 133, 153 espuma, 53 estabilidade à estocagem, 67, 72 flexão, 291, 303 mancha de areia, 430, 431, 432 pêndulo britânico, 430, 431 peneiração, 88 penetração, 42 placa, 266 ponto de amolecimento, 48 ponto de fulgor, 52, 53 ponto de ruptura Fraass, 54, 55 recuperação elástica por torção, 78, 79 resíduo por destilação, 90, 91 resíduo por evaporação, 90 sanidade, 143, 144 Schulze-Breuer and Ruck, 188, 271, 272, 273 sedimentação, 87 separação de fases, 72, 73 solubilidade, 49, 50 tenacidade, 73, 74, 75 tração direta, 108, 109 tração indireta, 308 Treton, 137, 138 viscosidade, 43, 45, 46, 91 envelhecimento, 49, 50, 51, 52, 108 escória de aciaria, 119, 355 escória de alto-forno, 119 escorregamento, 419, 420 especificação brasileira de asfalto diluído, 96, 97 especificação brasileira de emulsões asfálticas catiônicas, 84 especificação brasileira de emulsões asfálticas modificadas por polímero, 94, 95 especificação de emulsões asfál- ticas para lama asfáltica, 85 especificações para cimento asfáltico de petróleo, 60 espuma de asfalto, 53, 192, 474 estabilidade, 67, 72, 92, 121, 132, 222, 223, 288 estocagem, 33, 36, 37, 38, 67, 72, 376, 384 estufa de filme fino rotativo, 50, 51 estufa de película fina plana, 50, 51 EVA, 66, 67, 68 expressão de Duriez, 255 exsudação, 415, 416, 420 F fadiga, 288, 311, 312, 313, 315, 316, 445 feldspato, 117, 119 fendas, 117, 119 fibras, 172, 252 fíler, 120, 160 filtro de mangas, 380 fluência, 106, 222, 318 fluxo paralelo, 379, 383 forma dos agregados, 141, 142, 172 fórmula de Vogt, 254 fragilidade, 73 fresadoras, 189, 192 fresagem, 188, 190, 191, 468 fundação, 337 FWD, 445, 448, 450, 451, 452 G gabro, 118, 119 GB, 176, 179, 180 gel, 28, 30, 31 geogrelhas, 471 geossintéticos, 469 geotêxteis, 469, 470 gerência, 403, 413, 441 gnaisse, 117, 118, 362 graduação, 122, 123, 131, 159, 161, 169, 172, 183, 229, 264, 323 graduação aberta, 122, 159 graduação com intervalo, 172 graduação densa, 122, 159 graduação descontínua, 159 graduação do agregado, 159 graduação uniforme, 123 gráfico de Heukelom, 56, 57 granito, 117, 118, 119 grau de compactação, 389 grau de desempenho, 101, 259 grumos, 88, 89, 132, 213, 216 H hidrocarbonetos, 25, 27, 30, 33, 37 hidroplanagem, 429, 433 histórico, 11, 16 Hveem, 50, 291, 346 I IBP, 70, 80, 99, 291 IFI, 434 IGG, 415, 424, 427, 428, 429 IGI, 427, 428 impacto, 72, 127, 128, 205, 206, 448 imprimação, 97, 414 índice de atrito internacional, 434 índice de degradação após compactação Marshall, 139, 140 índice de degradação após compactação Proctor, 137 índice de degradação Washington, 136 índice de forma, 141, 264 índice de gravidade global, 415, 424, 428 índice de gravidade individual, 427, 428 índice de irregularidade internacional, 407 índice de penetração, 55, 56 índice de suporte Califórnia, 342 índice de susceptibilidade térmica, 41 IRI, 407, 408, 413 irregularidade, 404, 405, 407, 408, 409, 410, 411, 412, 413 irregularidade longitudinal, 407, 410 J juntas, 76, 469, 472
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved