Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

HIDRO - Cap3 - BH, Notas de estudo de Topografia

Apostila de Hidrologia Doutor Leonardo Batista Duarte

Tipologia: Notas de estudo

2013

Compartilhado em 04/01/2013

ryan-borges-6
ryan-borges-6 🇧🇷

3.8

(5)

21 documentos

Pré-visualização parcial do texto

Baixe HIDRO - Cap3 - BH e outras Notas de estudo em PDF para Topografia, somente na Docsity! Hidrologia Agosto/2006 CAPÍTULO 3. BACIA HIDROGRÁFICA 3.1. Introdução O Ciclo Hidrológico, como descrito anteriormente, tem um aspecto geral e pode ser visto como um sistema hidrológico fechado, já que a quantidade de água disponível para a terra é finita e indestrutível. Entretanto, os subsistemas abertos são abundantes, e estes são normalmente os tipos analisados pelos hidrologistas. Dentre as regiões de importância prática para os hidrologistas destacam- se as Bacias Hidrográficas (BH) ou Bacias de Drenagem, por causa da simplicidade que oferecem na aplicação do balanço de água, os quais podem ser desenvolvidos para avaliar as componentes do ciclo hidrológico para uma região hidrologicamente determinada, conforme Figura 6. Bacia Hidrográfica é, portanto, uma área definida topograficamente, drenada por um curso d’água ou por um sistema conectado de cursos d’água, tal que toda a vazão efluente seja descarregada por uma simples saída. CRUCIANI, 1976 define microbacia hidrográfica como sendo a área de formação natural, drenada por um curso d’água e seus afluentes, a montante de uma seção transversal considerada, para onde converge toda a água da área considerada. A área da microbacia depende do objetivo do trabalho que se pretende realizar (não existe consenso sobre qual o tamanho ideal). PEREIRA (1981) sugere: a) para verificação do efeito de diferentes práticas agrícolas nas perdas de solo, água e nutrientes área não deve exceder a 50 ha. b) estudo do balanço hídrico e o efeito do uso do solo na vazão áreas de até 10.000 ha. c) estudos que requerem apenas a medição de volume e distribuição da vazão bacias representativas com áreas de 10 a 50 mil ha. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 15 Hidrologia Agosto/2006 Figura 6 – Esquema de bacias hidrográficas. A resposta hidrológica de uma bacia hidrográfica é transformar uma entrada de volume concentrada no tempo (precipitação) em uma saída de água (escoamento) de forma mais distribuída no tempo (Figura 7). Figura 7 – Resposta hidrológica de uma bacia hidrográfica. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 16 Hidrologia Agosto/2006 c) Efêmeros: existem apenas durante ou imediatamente após os períodos de precipitação e só transportam escoamento superficial. A superfície freática se encontra sempre a um nível inferior ao do leito fluvial, não havendo a possibilidade de escoamento de deflúvio subterrâneo. 3.4. Características físicas de uma bacia hidrográfica Estas características são importantes para se transferir dados de uma bacia monitorada para uma outra qualitativamente semelhante onde faltam dados ou não é possível a instalação de postos hidrométricos (fluviométricos e pluviométricos). É um estudo particularmente importante nas ciências ambientais, pois no Brasil, a densidade de postos fluviométricos é baixa e a maioria deles encontram-se nos grandes cursos d’água, devido a prioridade do governo para a geração de energia hidroelétrica. Brasil: 1 posto/ 4000 km2; USA: 1 posto/ 1000 km2; Israel: 1 posto/ 200 km2. 3.4.1. Área de drenagem É a área plana (projeção horizontal) inclusa entre os seus divisores topográficos. A área de uma bacia é o elemento básico para o cálculo das outras características físicas. É normalmente obtida por planimetria ou por pesagem do papel em balança de precisão. São muito usados os mapas do IBGE (escala 1:50.000). A área da bacia do Rio Paraíba do Sul é de 55.500 km2. 3.4.2. Forma da bacia É uma das características da bacia mais difíceis de serem expressas em termos quantitativos. Ela tem efeito sobre o comportamento hidrológico da bacia, como por exemplo, no tempo de concentração (Tc). Tc é definido como sendo o tempo, a partir do início da precipitação, necessário para que toda a bacia contribua com a vazão na seção de controle. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 19 Hidrologia Agosto/2006 Existem vários índices utilizados para se determinar a forma das bacias, procurando relacioná-las com formas geométricas conhecidas: a) coeficiente de compacidade (Kc): é a relação entre o perímetro da bacia e o perímetro de um círculo de mesma área que a bacia. A P28,0Kc ; P PKc C BH == O Kc é sempre um valor > 1 (se fosse 1 a bacia seria um círculo perfeito). Quanto menor o Kc (mais próximo da unidade), mais circular é a bacia, menor o Tc e maior a tendência de haver picos de enchente. b) fator de forma (Kf): é a razão entre a largura média da bacia (L ) e o comprimento do eixo da bacia (L) (da foz ao ponto mais longínquo da área) 2L AKf ; L AL ; L LKf === Quanto menor o Kf, mais comprida é a bacia e portanto, menos sujeita a picos de enchente, pois o Tc é maior e, além disso, fica difícil uma mesma chuva intensa abranger toda a bacia. 3.4.3. Sistema de drenagem O sistema de drenagem de uma bacia é constituído pelo rio principal e seus tributários; o estudo das ramificações e do desenvolvimento do sistema é importante, pois ele indica a maior ou menor velocidade com que a água deixa a bacia hidrográfica. O padrão de drenagem de uma bacia depende da estrutura geológica do local, tipo de solo, topografia e clima. Esse padrão também influencia no comportamento hidrológico da bacia. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 20 Hidrologia Agosto/2006 a) Ordem dos cursos d’água e razão de bifurcação (Rb): De acordo com a Figura 10, adota-se o seguinte procedimento: 1) os cursos primários recebem o numero 1; 2) a união de 2 de mesma ordem dá origem a um curso de ordem superior; e 3) a união de 2 de ordem diferente faz com que prevaleça a ordem do maior. Quanto maior Rb média, maior o grau de ramificação da rede de drenagem de uma bacia e maior a tendência para o pico de cheia. Figura 10 – Ordem dos cursos d’água. b) densidade de drenagem (Dd): é uma boa indicação do grau de desenvolvimento de um sistema de drenagem. Expressa a relação entre o comprimento total dos cursos d’água (sejam eles efêmeros, intermitentes ou perenes) de uma bacia e a sua área total. A L Dd Σ= Para avaliar Dd, deve-se marcar em fotografias aéreas, toda a rede de drenagem, inclusive os cursos efêmeros, e depois medi-los com o curvímetro. Duas técnicas executando uma mesma avaliação podem encontrar valores um pouco diferentes. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 21 Hidrologia Agosto/2006 Figura 11 - Curva de distribuição da declividade de uma bacia hidrográfica. b) curva hipsométrica: é definida como sendo a representação gráfica do relevo médio de uma bacia. Representa o estudo da variação da elevação dos vários terrenos da bacia com referência ao nível médio do mar. Essa variação pode ser indicada por meio de um gráfico que mostra a percentagem da área de drenagem que existe acima ou abaixo das várias elevações. Pode também ser determinadas por meio das quadrículas associadas a um vetor ou planimetrando-se as áreas entre as curvas de nível. A seguir é apresentado um exemplo de cálculo da distribuição de altitude referente à mesma bacia do exemplo anterior. A Figura 12 apresenta a curva hipsométrica desta bacia. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 24 Hidrologia Agosto/2006 1 2 3 4 5 6 COTAS (m) PONTO MÉDIO (m) ÁREA (km2) ÁREA ACUMUL. (km2) % ACUMUL. COL. 2 * COL. 3 940 - 920 930 1,92 1,92 1,08 1.785,6 920 - 900 910 2,90 4,82 2,72 2.639,0 900 - 880 890 3,68 8,50 4,80 3.275,2 880 - 860 870 4,07 12,57 7,09 3.540,9 860 - 840 850 4,60 17,17 9,68 3.910,0 840 - 820 830 2,92 20,09 11,33 2.423,6 820 - 800 810 19,85 39,94 22,53 16.078,5 800 - 780 790 23,75 63,69 35,93 18.762,5 780 - 760 770 30,27 93,96 53,01 23.307,9 760 - 740 750 32,09 126,05 71,11 24.067,5 740 - 720 730 27,86 153,91 86,83 20.337,8 720 - 700 710 15,45 169,36 95,55 10.969,5 700 - 680 690 7,89 177,25 100,00 5.444,1 TOTAL 177,25 136.542,1 Altitude média ( A ): A )Ae( A ii∑= Altitude média = ∑ ∑ 3 Coluna 6 Coluna Altitude média = m 770 25,177 1,542. = 136 Figura 12 - Curva hipsométrica de uma bacia hidrográfica. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 25 Hidrologia Agosto/2006 c) Perfil longitudinal do curso d água: pelo fato da velocidade de escoamento de um rio depender da declividade dos canais fluviais, conhecer a declividade de um curso d’água constitui um parâmetro de importância no estudo de escoamento (quanto maior a declividade maior será a velocidade). Existem 4 procedimentos para se determinar a declividade média do curso d’água (Figura 13): 1o) Declividade baseada nos extremos (S1): obtida dividindo-se a diferença total de elevação do leito pela extensão horizontal do curso d’água entre esses dois pontos. Este valor superestima a declividade média do curso d’água e, consequentemente, o pico de cheia. Essa superestimativa será tanto maior quanto maior o número de quedas do rio. 2o) Declividade ponderada (S2): um valor mais representativo que o primeiro consiste em traçar no gráfico uma linha, tal que a área, compreendida entre ela e a abcissa, seja igual à compreendida entre a curva do perfil e a abcissa. 3o) Declividade equivalente constante (S3): leva em consideração o tempo de percurso da água ao longo da extensão do perfil longitudinal, considerando se este perfil tivesse uma declividade constante igual à uma declividade equivalente. 2 i i i 3 ) ) D L( L (S ∑ ∑= , em que Li e Di são a distância em e a declividade em cada trecho i, respectivamente. 4o) Declividade 15 – 85 (S4): obtida de acordo com o método da declividade baseada nos extremos, porém descartando-se 15% dos trechos inicial e final do curso d’água. Isto se deve, pois a maioria dos cursos d’água têm alta declividade próximo da nascente e torna-se praticamente plano próximo de sua barra. O Quadro a seguir apresenta um exemplo de cálculo do perfil longitudinal do curso d’água: Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 26 Hidrologia Agosto/2006 3.5. Exercícios 1) Assinale a alternativa correta cujos fatores contribuem para que uma bacia apresente uma maior tendência a picos de cheias: a) <área; <Kc; >Kf; <Rb; >Tc; <Dd; b) >área; >Kc; <Kf; >Rb; <Tc; >Dd; c) <área; <Kc; >Kf; <Rb; <Tc; <Dd; d) <área; <Kc; >Kf; >Rb; >Tc; >Dd; e) >área; <Kc; >Kf; >Rb; <Tc; >Dd; 2) Determinar a declividade média (Dm) de uma bacia hidrográfica e a curva de distribuição de declividade da bacia (papel semi-log) para os dados da tabela abaixo, os quais foram estimados pelo método das quadrículas: 1 2 3 4 5 6 Declividade (m/m) Número de ocorrência % do total % acumulada declividade média do intervalo coluna 2 x coluna 5 0,0000 - 0,0059 70 0,0060 - 0,0119 45 0,0120 - 0,0179 30 0,0180 - 0,0239 5 0,0240 - 0,0299 0 0,0300 - 0,0359 10 0,0360 - 0,0419 3 0,0420 - 0,0479 2 Total 3) Determinar a curva hipsométrica (papel milimetrado) e a elevação média de uma bacia hidrográfica para os dados da tabela abaixo : 1 2 3 4 5 6 cotas (m) Ponto médio (m) Área (km2) Área acumulada % acumulada col 2 x col 3 830 - 800 3,2 800 - 770 4,0 770 - 740 4,5 740 - 710 10,0 710 - 680 33,6 680 - 650 40,2 650 - 620 25,8 620 - 590 8,8 Total Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 29 Hidrologia Agosto/2006 4) De uma bacia hidrográfica, conhece-se os seguintes dados: - Perímetro: 70,0 km - Distribuição de cotas: Cotas (m) Ponto Médio (m) Área (km2) Área Acumulada (km2) % Acumulada Coluna 2 * Coluna 3 940 – 920 1,92 920 – 900 2,90 900 – 880 3,68 880 – 860 4,07 860 – 840 4,60 840 – 820 2,92 820 – 800 19,85 800 – 780 23,75 780 – 760 30,27 760 – 740 32,09 740 – 720 27,86 720 – 700 15,45 700 – 680 7,89 TOTAL - Distribuição de declividade: Decividade (m/m) Número de Ocorrências % do Total % Acumulada Declividade Média Coluna 2 * Coluna 5 0,0000 – 0,0049 249 0,0050 – 0,0099 69 0,0100 – 0,0149 13 0,0150 – 0,0199 7 0,0200 – 0,0249 0 0,0250 – 0,0299 15 0,0300 – 0,0349 0 0,0350 – 0,0399 0 0,0400 – 0,0449 0 0,0450 – 0,0499 5 TOTAL Pede-se: a) Qual é o coeficiente de compacidade? b) Qual é a altitude média? c) Qual é a declividade média? Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 30 Hidrologia Agosto/2006 5) Com os dados do perfil longitudinal de um curso d’água apresentado abaixo, calcule a sua declividade baseada nos extremos. 1 2 3 4 5 6 8 Cotas (m) Distância (m) Distância (Li) (km) Distância Acumulada (km) Declividade por Segmento (Di) )5( (Si) Li/Si 540 - 560 3500 0,0057 560 - 580 2400 0,0083 580 - 600 860 0,0233 600 - 620 920 0,0217 620 - 640 560 0,0357 640 - 660 400 0,0500 660 - 680 1200 0,0167 680 - 700 1060 0,0189 700 - 720 650 0,0308 720 - 740 300 0,0667 740 - 760 260 0,0769 760 - 780 240 0,0833 TOTAL 6) O que é declividade equivalente constante? Determinar essa declividade para o perfil do curso d’água apresentado a seguir. Cotas (m) Distância (m) Distância (Li) (km) Distância Acumulada (km) Declividade por Segmento (Di) )5( (Si) Li/Si 660 - 680 5800 680 - 700 500 700 - 720 3375 720 - 740 5000 740 - 760 750 760 - 780 1200 780 - 800 350 800 - 820 350 820 - 840 880 840 - 860 950 TOTAL 7) (Questão 18 Prova de Hidrologia Concurso CPRM 2002 - Certo ou Errado) a) (item 1) Em um mapa feito na escala 1:25.000, a planimetria acusou o valor de 4.163 cm2 para a área de uma bacia hidrográfica, e foram totalizados os seguintes comprimentos dos cursos d’água na bacia. Prof. Daniel Fonseca de Carvalho e Prof. Leonardo Duarte Batista da Silva 31
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved