trelicas

trelicas

(Parte 1 de 2)

ESTRUTURAS I – Profa: Sílvia Baptista Kalil/Eduardo Azambuja

86 TRELIÇAS ISOSTÁTICAS

Treliça ideal é um sistema reticulado indeformável cujas barras possuem todas as suas extremidades rotuladas e cujas cargas estão aplicadas nestas rótulas.

Exemplo:

Obs 1 : Qualquer polígono que constitua um sistema reticulado, quando articulado em seus vértices é deformável (hipostático) com exceção dos casos abaixo (desprezando-se as pequenas deformações elásticas):

Obs 2: As treliças surgiram como um sistema mais econômico que as vigas para vencerem vãos maiores ou suportar cargas maiores.

Obs 3: Embora o caso mais geral seja o de treliças espaciais, o mais frequente é o de treliças planas, que será o estudado em nosso curso.

Obs 4 : Imaginamos as barras rotuladas em suas extremidades (isto é, sendo livre sua rotação relativa nos nós), conforme figura (a). Não é frequente, no entanto, a união destas barras nesta forma, sendo mais comum ligar as barras nos nós através de chapas auxiliares, nas quais rebitamos, soldamos ou parafusamos as barras neles concorrentes (fig. b)

ESTRUTURAS I – Profa: Sílvia Baptista Kalil/Eduardo Azambuja

Estas ligações criarão sempre pequenas restrições à livre rotação relativa das barras nos nós, com o aparecimento de pequenos momentos nas barras.

Estudos realizados demonstram que, desde que todas as barras tenham seus eixos no mesmo plano e que estes eixos se encontrem em um único ponto em cada nó, os resultados reais diferem muito pouco dos resultados obtidos pela teoria que vamos desenvolver, sendo ela válida do ponto de vista prático.

Podemos facilmente demonstrar que as barras de uma treliça por terem suas extremidades rotuladas ), desenvolvem apenas esforços normais constantes ao longo de suas barras.

Isto pode ser visualizado isolando-se uma barra de uma treliça.

Sabe-se que uma rótula não transmite momento, apenas esforços na direção do eixo e perpendiculares a ele. Por outro lado, as cargas externas só estão aplicadas nos nós.

A análise do equilíbrio nos mostra que nas extremidades das barras de uma treliça só existem esforços na direção do eixo longitudinal da mesma e que são de mesmo módulo, porém sentidos contrários.A existência de esforços perpendiculares ao eixo da barra (esforço cortante) é descartada pois as barras não são carregadas ao longo de seu eixo, e tem nas suas extremidades momentos nulos.

Conclusão: A única solicitação interna desenvolvida é um Esforço Normal constante ao longo da mesma.

Como o esforço normal é constante ao longo da barra podemos calcular o seu valor em uma seção qualquer, da barra que se deseja.

ESTRUTURAS I – Profa: Sílvia Baptista Kalil/Eduardo Azambuja

Sejam:
b - número de barrasn - número de nós ou rótulas

B. CLASSIFICAÇÃO QUANTO A SUA ESTATICIDADE r - número de reações externas

As incognitas do problema serão em número de b + r ,ou seja, o número de reações e a solicitação de esforço normal em cada barra.

material (Σ Fx = 0Σ Fy = 0 ).

O número de equações será de 2n, pois em cada nó se aplicam as equações de equilíbrio de um ponto Então, se

r + b  2 nTreliça hipostática
r + b = 2 nSugere tratar- se de uma treliça isostática, o que não pode ser confirmado sem antes

analisarmos a lei de formação interna da treliça em questão.

r + b > 2 nSugere tratar- se de uma treliça hiperestática, , o que não pode ser confirmado sem

antes de analisarmos a lei de formação interna da treliça em questão.

C. CLASSIFICAÇÃO QUANTO À LEI DE FORMAÇÃO Quanto a formação as treliças podem ser :

1. Simples :

A treliça será simples se puder ser obtida a partir de configurações indeformáveis pela adição de duas a duas barras partindo nós já existentes para novos nós (um novo nó para cada duas novas barras).

ESTRUTURAS I – Profa: Sílvia Baptista Kalil/Eduardo Azambuja

89 Exemplo:

2. Composta

A treliça é composta quando for formada por duas treliças simples ligadas por 3 barras não simultaneamente concorrentes ou paralelas, ou por um nó e uma barra sendo que esta barra não concorre no nó citado.

A resolução de uma treliça composta pode recair no caso de duas treliças simples, mediante o cálculo prévio dos esforços nos elementos de ligação, o que permitirá isolá-las para fins de cálculo estático.

Exemplo:

3. Complexa:

Uma treliça complexa é classificada por exclusão, ou seja, quando não é simples nem composta. Observe que não podemos afirmar se ela é isostática pela simples análise de b + r = 2 n que é uma condição necessária mas não suficiente para garantir a isostaticidade.

Exemplo:

ESTRUTURAS I – Profa: Sílvia Baptista Kalil/Eduardo Azambuja

90 D. MÉTODO DE RESOLUÇÃO DAS TRELIÇAS ISOSTÁTICAS SIMPLES

O cálculo dos esforços normais nas barras de uma treliça isostáticasimples pode ser feito de tres maneiras:

- Método dos nós - Método de Ritter ou das seções

- Método de Cremona

No curso vamos nos ater aos dois primeiros métodos , já que o método de Cremona, por ser um método gráfico está em desuso com a aplicação da mecanização dos cálculos (informática).

1. CÁLCULO DOS ESFORÇOS NORMAIS NAS BARRAS PELO MÉTODO DOS NÓS. É o método natural de resolução que consiste em se estudar o equilíbrio de cada nó isolado.

Devemos INICIAR E PROSSEGUIR pelos nós que possuam apenas duas incógnitas à determinar (esforço normal de 2 barras).Aplicamos as equações de equilíbrio estático:

ΣΣΣΣ Fx = 0ΣΣΣΣ Fy = 0

Note-se que se o nó tiver mais de duas barras à serem determinadas (2 incógnitas) 2 equações não bastam para a solução do sistema.

ROTEIRO: 1 - Cálculo das reações externas (se necessário) 2 - Escolha do 1º nó à ser examinado 3 - Aplicação das equações de equilíbrio no nó escolhido

4 - Resolvido o primeiro nó, passamos ao segundo sempre com o cuidado de verificar se ela tem apenas duas incógnitas (2 barras à serem determinadas)

OBS: Este método apresenta o problema de acumular os erros de cálculos que por acaso forem cometidos.

2. CÁLCULO DOS ESFORÇOS NORMAIS USANDO O MÉTODO DE RITTER (MÉTODO DAS SEÇÕES)

Vimos que pelo método dos nós, devemos seguir uma ordem de cálculo e calculamos os esforços em todas as barras de uma treliça.

O método de Ritter permite que se calcule os esforços normais apenas em algumas barras que possam nos interessar.

(Parte 1 de 2)

Comentários