Capítulo 01 - Transmissão de movimento

Capítulo 01 - Transmissão de movimento

(Parte 1 de 2)

Capítulo 1 - Transmissão de movimento

Neste capítulo definiremos o conceito de relação de transmissão e sua aplicação nos mecanismos de máquinas mecânicos. Também revisaremos alguns conceitos simples de cinemática que nos auxiliarão a conceituar relação de transmissão.

1.1 - Cinemática

A cinemática é à parte da mecânica que estuda o movimento dos corpos sem se preocupar com as suas causas, ou seja, somente se preocupa com os efeitos. A cinemática descreve a posição, a velocidade e a aceleração dos corpos em cada instante do movimento.

A mudança de posição dos corpos ao longo do tempo acaba por definir trajetórias do movimento. As relações da cinemática de maior uso prático são aquelas dadas para trajetórias retilíneas e circulares, notadamente as do movimento retilíneo uniforme (MRU) e do movimento circular uniforme (MCU), ou seja, aqueles de velocidade constante, pois a maior parte dos mecanismos das máquinas assim funcionam.

Começaremos nossa revisão de cinemática analisando o transporte (movimento) de uma carga por uma correia transportadora. Se marcarmos um ponto de referência (referencial) e a partir dele medíssemos a posição da carga (s) e o tempo (t), poderíamos descrever a trajetória retilínea da carga e até prever onde ela estará dentro de um certo tempo ou quando ela chegará ao seu destino.

A partir dos elementos ilustrados pela correia transportadora podemos definir velocidade linear, v, como a razão entre a variação da posição ou espaço percorrido, s, e o tempo gasto, t, ou seja

(1.1)

No SI, a unidade usada para o espaço percorrido é o metro [m], para o tempo é o segundo [s] e para a velocidade linear é o [m/s].

Vamos agora trabalhar com trajetórias circulares. Como ilustra a próxima figura, um exemplo comum é uma polia de transmissão por correias. A polia realiza um movimento de rotação e a correia realiza um movimento composto (retilíneo e circular).

A velocidade angular com que se percorre um ângulo [rad] num dado tempo t [s], é expressa como

(1.2)

A unidade do SI, para velocidade angular é [rad/s].

Outra maneira de nos referirmos indiretamente à velocidade angular é por meio do número de rotações por unidade de tempo, ou simplesmente rotação. As unidades mais comuns para o número de rotações n são: O rps (número de rotações por segundo) e o rpm (número de rotações por minuto). O rps e o rpm não pertencem ao SI, porém, seu uso na pratica de mecânica é tal, que se torna obrigatório estudá-los.

Para n [rps] e [rad/s], temos a seguinte relação

(1.3)

onde é dizima não periódica e seu valor usual é 3,1415.

Para n [rpm] e [rad/s], temos a seguinte relação

(1.4)

A velocidade tangencial vt com que se percorre o arco c [m]da trajetória circular num dado tempo t [s] é expressa por

(1.5)

A velocidade tangencial e a velocidade angular se relacionam por

(1.6)

O conceito de aceleração pode ser ilustrado pelo exemplo de um automóvel que ao trafegar por uma estrada com velocidade constante, num determinado momento precisa fazer uma ultrapassagem, então o motorista faz com que ocorra uma variação positiva na velocidade. Da mesma forma, o motorista pode querer frenar o automóvel, provocando uma variação negativa na velocidade. Neste caso, a aceleração pode ser entendida como um indicador físico da variação da velocidade do automóvel.

A aceleração linear constante (a) pode ser definida como

(1.7)

onde v é a variação da velocidade, vf é a velocidade final e vié a velocidade inicial. No SI, a aceleração é dada em [m/s2].

A terra exerce uma força de atração gravitacional, efeito da gravidade, sobre os corpos situados em seu campo de ação. O conhecido efeito da gravidade faz com que os corpos em queda livre tenham uma aceleração aproximadamente constante. O valor adotado para a aceleração da gravidade usual no SI é 9,8065 m/s2.

Exercício 1: O fuso de um balancim tem uma rosca com passo de 12mm. Que velocidade de subida ou descida (em m/min.) tem a cabeça se o fuso tem uma rotação de 120RPM?

Exercício2: qual a rotação, em RPM, dos eixos de um automóvel a 120km/h, se suas rodas possuem diâmetro de 55cm?

1.2 - Transmissão mecânica de movimento

A mecânica técnica é o conjunto de aplicações práticas das leis físicas da mecânica, abrangendo os fenômenos que ocorrem em elementos e sistemas mecânicos. A finalidade básica deste estudo é compreender o funcionamento das máquinas, e também propor soluções para seus acionamentos.

Na prática, as transformações de movimento mais comuns são:

  • Rotação em rotação;

Exemplos:

Engrenagens, sem fim e coroa, polias com correias, rodas dentadas com correntes, rodas de atrito ou fricção.

Engrenagem

Polias com correia

  • Rotação em movimento retilíneo;

Exemplos:

Cames,

biela-manivela, Pinhão-cremalheira, mecanismo de cabo e tambor, fuso

e porca.

Biela-manivela

Cames

  • Movimento retilíneo em rotação;

Exemplos:

Conjunto

biela-manivela,

pinhão-cremalheira,

cabo e tambor, etc...

Biela-manivela

Pinhão-cremalheira

  • Movimento rotativo em oscilatório.

Exemplos:

cames,

garfo oscilador,

etc...

Garfo oscilador

Quanto aos elementos que realizam a transmissão, podemos ter:

  • Contato direto: Engrenagens, rodas de fricção, cames, garfo oscilador.

  • Elemento intermediário rígido: Biela-manivela.

  • Elemento intermediário flexível: Polias com correias, rodas dentadas com correntes.

1.3 - Transformação de rotação em rotação

Os sistemas de transmissão de movimento mais empregados na indústria são aqueles que trabalham com transformação da rotação em rotação. O objetivo desta seção, será estudar as principais transformações deste tipo, ou seja, transmissões por correias, por correntes, por engrenagens e rodas de fricção.

1.3.1- Transmissão por correias

A transmissão entre dois eixos paralelos ou que se cruzem em planos diferentes pode ser conseguida por meio de um ou mais elementos intermediários flexíveis, chamados de correias.

A forma mais simples desse tipo de transmissão é composta por um par de polias: uma conectada ao eixo motor (torque de acionamento) e outra ao eixo movido (torque resistente), ambas envolvidas por uma correia ou grupo de correias.

1) Transmissão entre eixos reversos

2) Transmissão entre eixos paralelos com mesmo sentido de rotação

3) Transmissão entre eixos paralelos com inversão do sentido de rotação

4) Transmissão com o emprego de várias correias

As transmissões representadas nas figuras 1, 2 e 3 utilizam correias planas e na representação da figura 4 aparecem correias trapezoidais.

As fotografias abaixo ilustram com mais realidade a transmissão por correias e polias.

A possibilidade de transmitir potência por meio desse mecanismo é obtida do atrito gerado entre a polia e a correia. Tal atrito é obtido mediante uma pressão da correia sobre a polia, resultando em forças normais de contato. A compressão da correia sobre a polia é produzida durante a montagem, quando se faz o tensionamento adequado.

Teoricamente, não deveria haver deslizamento entre as correias e polias, mas isto ocorre com alguma freqüência na prática. Por isso, a configuração de montagem dessas transmissões deve ser tal que o lado tracionado da correia seja sempre o de baixo, pois assim obtém-se maiores ângulos de abraçamento sobre as polias, minimizando o deslizamento. Observe o esquema:

Uma outra maneira prática empregada quando há disponibilidade recursos, é uma polia tensora ou esticadora para o lado frouxo.

1.3.2 Transmissão por rodas de fricção ou atrito

A transmissão entre dois eixos paralelos, situados a pequenas distâncias um em relação ao outro, pode ser conseguida com a utilização de cilindros de contato, denominados de rodas de fricção. Veja a figura

Este tipo de transmissão necessita de elevados coeficientes de atrito, grande superfície de contato, entre as rodas, para poder transmitir grandes potências. Como o atrito tem que ser elevado, também o será o desgaste das rodas, principalmente na de menor diâmetro. Estas desvantagens fizeram com que as rodas de fricção passassem a ser aplicadas apenas em situações especiais.

Geralmente, elas são utilizadas onde o deslizamento não interfere no funcionamento da máquina, ou na qualidade final do produto. Deste modo, uma de suas aplicações é na área de diversão, como por exemplo, o acionamento de rodas gigantes, onde elas servem também como freios do sistema.

(Parte 1 de 2)

Comentários