Transferencia de Calor - da UNISANTA

Transferencia de Calor - da UNISANTA

(Parte 2 de 25)

· Condução

dependem somente de um DT

· Radiação

· Convecção Þ depende de um DT e transporte de massa

2.1. CONDUÇÃO

A condução pode se definida como o processo pelo qual a energia é transferida de uma região de alta temperatura para outra de temperatura mais baixa dentro de um meio (sólido, líquido ou gasoso) ou entre meios diferentes em contato direto. Este mecanismo pode ser visualizado como a transferência de energia de partículas mais energéticas para partículas menos energéticas de uma substância devido a interações entre elas.

O mecanismo da condução pode ser mais facilmente entendido considerando, como exemplo, um gás submetido a uma diferença de temperatura. A figura 2.1 mostra um gás entre duas placas a diferentes temperaturas :

[ figura 2.1 ]

1. O gás ocupa o espaço entre 2 superfícies (1) e (2) mantidas a diferentes temperaturas de modo que T1 > T2 (o gás não tem movimento macroscópico);

2. Como altas temperaturas estão associadas com energias moleculares mais elevadas, as moléculas próximas à superfície são mais energéticas (movimentam-se mais rápido);

3. O plano hipotético X é constantemente atravessado por moléculas de cima e de baixo. Entretanto, as moléculas de cima estão associadas com mais energia que as de baixo.

èPortanto existe uma transferência líquida de energia de (1) para (2) por condução

Para os líquidos o processo é basicamente o mesmo, embora as moléculas estejam menos espaçadas e as interações sejam mais fortes e mais freqüentes. Para os sólidos existem basicamente dois processos ( ambos bastante complexos ) :

· sólido mau condutor de calor : ondas de vibração da estrutura cristalina

· sólido bom condutor de calor: movimento dos eletrons livres e vibração da estrutura cristalina.

2.2. CONVECÇÃO

A convecção pode ser definida como o processo pelo qual energia é transferida das porções quentes para as porções frias de um fluido através da ação combinada de : condução de calor, armazenamento de energia e movimento de mistura.

O mecanismo da convecção pode ser mais facilmente entendido considerando, por exemplo, um circuito impresso (chip) sendo refrigerado (ar ventilado), como mostra a figura 2.2 :

[ figura 2.2 ]

1. A velocidade da camada de ar próxima à superfície é muito baixa em razão das forças viscosas ( atrito ).

2. Nesta região o calor é transferido por condução. Ocorre portanto um armazenamento de energia pelas partículas presentes nesta região.

3. Na medida que estas partículas passam para a região de alta velocidade, elas são carreadas pelo fluxo transferindo calor para as partículas mais frias.

èNo caso acima dizemos que a convecção foi forçada, pois o movimento de mistura foi induzido por um agente externo, no caso um ventilador.

Suponhamos que o ventilador seja retirado. Neste caso, as partículas que estão próximas à superfície continuam recebendo calor por condução e armazenando a energia. Estas partículas tem sua temperatura elevada e, portanto a densidade reduzida. Já que são mais leves elas sobem trocando calor com as partículas mais frias (e mais pesadas) que descem.

èNeste caso dizemos que a convecção é natural (é óbvio que no primeiro caso a quantidade de calor transferido é maior).

Um exemplo bastante conhecido de convecção natural é o aquecimento de água em uma panela doméstica como mostrado na figura 2.3. Para este caso, o movimento das moléculas de água pode ser observado visualmente.

[ figura 2.3 ]

2.3. RADIAÇÃO

A radiação pode se definida como o processo pelo qual calor é transferido de um superfície em alta temperatura para um superfície em temperatura mais baixa quando tais superfícies estão separados no espaço, ainda que exista vácuo entre elas. A energia assim transferida é chamada radiação térmica e é feita sob a forma de ondas eletromagnéticas.

O exemplo mais evidente que podemos dar é o próprio calor que recebemos do sol. Neste caso, mesmo havendo vácuo entre a superfície do sol ( cuja temperatura é aproximadamente 5500 oC ) e a superfície da terra, a vida na terra depende desta energia recebida. Esta energia chega até nós na forma de ondas eletromagnéticas. As ondas eletromagnéticas são comuns a muitos outros fenômenos: raio-X, ondas de rádio e TV, microondas e outros tipos de radiações.

As emissões de ondas eletromagnéticas podem ser atribuídas a variações das configurações eletrônicas dos constituintes de átomos e moléculas, e ocorrem devido a vários fenômenos, porém, para a transferência de calor interessa apenas as ondas eletromagnéticas resultantes de uma diferença de temperatura ( radiações térmicas ). As suas características são:

· Todos corpos em temperatura acima do zero absoluto emitem continuamente radiação térmica

· As intensidades das emissões dependem somente da temperatura e da natureza da superfície emitente

· A radiação térmica viaja na velocidade da luz (300.000 Km/s)

2.4. MECANISMOS COMBINADOS

Na maioria das situações práticas ocorrem ao mesmo tempo dois ou mais mecanismos de transferência de calor atuando ao mesmo tempo. Nos problemas da engenharia, quando um dos mecanismos domina quantitativamente, soluções aproximadas podem ser obtidas desprezando-se todos, exceto o mecanismo dominante. Entretanto, deve ficar entendido que variações nas condições do problema podem fazer com que um mecanismo desprezado se torne importante.

Como exemplo de um sistema onde ocorrem ao mesmo tempo vários mecanismo de transferência de calor consideremos uma garrafa térmica. Neste caso, podemos ter a atuação conjunta dos seguintes mecanismos esquematizados na figura 2.4 :

[ figura 2.4 ]

q1 : convecção natural entre o café e a parede do frasco plástico

q2 : condução através da parede do frasco plástico

q3 : convecção natural do frasco para o ar

q4 : convecção natural do ar para a capa plástica

q5 : radiação entre as superfícies externa do frasco e interna da capa plástica

q6 : condução através da capa plástica

q7 : convecção natural da capa plástica para o ar ambiente

q8 : radiação entre a superfície externa da capa e as vizinhanças

Melhorias estão associadas com (1) uso de superfícies aluminizadas ( baixa emissividade ) para o frasco e a capa de modo a reduzir a radiação e (2) evacuação do espaço com ar para reduzir a convecção natural.

2.5. REGIMES DE TRANSFERÊNCIA DE CALOR

O conceito de regime de transferência de calor pode ser melhor entendido através de exemplos. Analisemos, por exemplo, a transferência de calor através da parede de uma estufa qualquer. Consideremos duas situações : operação normal e desligamento ou religamento.

Durante a operação normal, enquanto a estufa estiver ligada a temperatura na superfície interna da parede não varia. Se a temperatura ambiente externa não varia significativamente, a temperatura da superfície externa também é constante. Sob estas condições a quantidade de calor transferida para fora é constante e o perfil de temperatura ao longo da parede, mostrado na figura 2.5.(a), não varia. Neste caso, dizemos que estamos no regime permanente.

[ figura 2.5 ]

Na outra situação consideremos, por exemplo, o desligamento. Quando a estufa é desligada a temperatura na superfície interna diminui gradativamente, de modo que o perfil de temperatura varia com o tempo, como pode ser visto da figura 2.5.(b). Como consequência, a quantidade de calor transferida para fora é cada vez menor. Portanto, a temperatura em cada ponto da parede varia. Neste caso, dizemos que estamos no regime transiente.

Os problemas de fluxo de calor em regime transiente são mais complexos. Entretanto, a maioria dos problemas de transferência de calor são ou podem ser tratados como regime permanente.

2.6. SISTEMAS DE UNIDADES

As dimensões fundamentais são quatro : tempo, comprimento, massa e temperatura. Unidades são meios de expressar numericamente as dimensões.

Apesar de ter sido adotado internacionalmente o sistema métrico de unidades denominado sistema internacional (S.I.), o sistema inglês e o sistema prático métrico ainda são amplamente utilizados em todo o mundo. Na tabela 2.1 estão as unidades fundamentais para os três sistemas citados :

Tabela 2.1 - Unidades fundamentais dos sistemas de unidades mais comuns

SISTEMA

TEMPO, t

COMPRIMENTO,L

MASSA ,m

TEMPERATURA

S.I.

segundo,s

metro,m

quilograma,kg

Kelvin,k

INGLÊS

segundo,s

pé,ft

libra-massa,lb

Farenheit,oF

MÉTRICO

segundo,s

metro,m

quilograma,kg

celsius,oC

Unidades derivadas mais importantes para a transferência de calor, mostradas na tabela 2.2, são obtidas por meio de definições relacionadas a leis ou fenômenos físicos :

· Lei de Newton : Força é igual ao produto de massa por aceleração ( F = m.a ), então :

1 Newton ( N ) é a força que acelera a massa de 1 Kg a 1 m/s2

· Trabalho ( Energia ) tem as dimensões do produto da força pela distância ( t = F.x ), então :

1 Joule ( J ) é a energia dispendida por uma força de 1 N em 1 m

· Potência tem dimensão de trabalho na unidade de tempo ( P = t / t ), então :

1 Watt ( W ) é a potência dissipada por uma força de 1 J em 1 s

(Parte 2 de 25)

Comentários