Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Desenho Geométrico - Apostilas - Desenho Industrial Parte1, Notas de estudo de Desenho Técnico

Apostilas de Arquitetura sobre o estudo do Desenho Geométrico, instrumentos necessários, segmentos, retas, construções geométricas.

Tipologia: Notas de estudo

2013

Compartilhado em 26/03/2013

Cunha10
Cunha10 🇧🇷

4.5

(244)

393 documentos

1 / 48

Documentos relacionados


Pré-visualização parcial do texto

Baixe Desenho Geométrico - Apostilas - Desenho Industrial Parte1 e outras Notas de estudo em PDF para Desenho Técnico, somente na Docsity! UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS SOCIAIS E EDUCAÇÃO DEPARTAMENTO DE MATEMÁTICA, ESTATÍSTICA E INFORMÁTICA. LICENCIATURA EM MATEMÁTICA MODALIDADE À DISTÂNCIA DISCIPLINA: DESENHO GEOMÉTRICO Prof. JORGE HENRIQUE DE JESUS BERREDO REIS UEPA – Universidade do Estado do Pará 1 Sumário APRESENTAÇÃO 1 SUGESTÕES PARA O ESTUDO DE DESENHO GEOMÉTRICO 2 OS INSTRUMENTOS DE DESENHO 3 1. DESENHO GEOMÉTRICO 5 2. ENTES GEOMÉTRICOS 6 3 RETA 7 3.1. SEMI-RETA 7 3.2. SEGMENTO DE RETA 8 3.3. SEGMENTOS COLINEARES 8 3.4. SEGMENTOS CONSECUTIVOS 8 3.5. RETAS COPLANARES 8 3.6. RETAS CONCORRENTES 8 3.7. POSIÇÕES DE UMA RETA 9 3.8. POSIÇÕES RELATIVAS ENTRE DUAS RETAS 9 4. CONSTRUÇÕES GEOMÉTRICAS 10 4.1. TRAÇADO DE PERPENDICULARES 10 4.2. TRAÇADO DE PARALELAS 13 4.3. DIVISÃO DE UM SEGMENTO DE RETA EM UM NÚMERO QUALQUER DE PARTES IGUAIS 14 5. ÂNGULO 15 5.1. DEFINIÇÃO 15 5.2. ELEMENTOS 15 5.3 REPRESENTAÇÃO 15 5.4. MEDIDA DE ÂNGULOS 15 5.5. CONSTRUÇÃO E MEDIDA DE ÂNGULOS COM O TRANSFERIDOR: 15 5.6. CLASSIFICAÇÃO: 16 5.6.1. Quanto à abertura dos lados 16 5.6.2. Quanto à posição que ocupam 17 5.7. POSIÇÕES RELATIVAS DOS ÂNGULOS: 18 5.8. TRANSPORTE DE ÂNGULOS 19 5.9. BISSETRIZ DE UM ÂNGULO 20 UEPA – Universidade do Estado do Pará 4 UNIVERSIDADE DO ESTADO DO PARÁ CURSO DE LICENCIATURA PLENA EM MATEMÁTICA MODADLIDADE A DISTÂNCIA DISCIPLINA: DESENHO GEOMÉTRICO PROF: JORGE HENRIQUE DE JESUS BERREDO REIS Olá amigo! Bem vindo ao módulo de Desenho Geométrico do nosso curso. Como você sabe, a Geometria é um capítulo importantíssimo no estudo da Matemática e o Desenho Geométrico é uma ferramenta valiosíssima para uma melhor compreensão das formas e propriedades das figuras e corpos. Nessa nossa conversa inicial vamos propor algumas questões que, com certeza, tornarão mais agradável e mais fácil as nossas discussões sobre o assunto. Em primeiro lugar gostaríamos de dizer que o desenho é uma habilidade que qualquer pessoa é capaz de desenvolver. Ainda mais, com o auxílio de nossos instrumentos, a tarefa ficará bem mais fácil. O Desenho Geométrico é fortemente baseado em procedimentos lógicos que estamos acostumados a realizar no nosso dia a dia. Quer ver um exemplo? Se você é capaz de escrever - e se não fosse assim não estaria aqui - é também capaz de manusear um lápis e desenhar. A propósito, escrever nada mais é do que desenhar letras, não é mesmo? O que vai fazer a diferença entre escrever e desenhar bem ou mal é a dedicação com que você vai se atirar a essa tarefa. Outra coisa que queremos lhe falar, dentro dessa lógica com que vamos trabalhar, é que não existe nada nesse mundo que seja difícil. Muita gente tem aversão a algumas atividades por achar que as mesmas são difíceis e que não conseguirão aprendê-las e nós sabemos muito bem que o desenho não está livre disso. Mas, pense bem, em algum estágio de nossas vidas, certas atividades como andar, falar, escrever, amarrar os cadarços de nossos sapatos, eram ações que davam um certo trabalho, não é mesmo? Só mais um exemplo: você acha que pilotar um jato é coisa difícil, inatingível? Se assim fosse essa profissão de piloto não existiria, certo? Então, o que é que acontece? O futuro piloto tem as primeiras lições teóricas; depois, tem aulas em simuladores de vôo, voa acompanhado de instrutor, e assim vai até chegar ao comando do avião. Essa trajetória toda é dividida em etapas, conhecimentos que se vão acumulando ao longo de estudos, até se atingir o objetivo final. E, note que desenhar é bem menos arriscado que pilotar um jato, certo? Pois bem, nossos estudos serão assim: divididos em etapas, concluídas passo a passo e, ao final do curso você terá acrescentado mais esse conhecimento em sua formação profissional. Saudações PITAGÓRICAS e EUCLIDIANAS e até a próxima! UEPA – Universidade do Estado do Pará 5 Qualquer assunto que pretendamos estudar tem que ser acompanhado de um método, de um guia ou roteiro que facilite a nossa tarefa. Sabe a velha receita daquele bolo gostoso que vai passando de mãe para filha, para as amigas mais chegadas, para as colegas do trabalho? Pois é. Uma receita, na verdade, é um guia de como preparar um alimento, misturando os ingredientes na medida certa, cozinhando-os no tempo certo e aí, o alimento fica pronto. Assim acontece quando estudamos um assunto, quando queremos aprender uma determinada coisa. Vamos, passo a passo, formando uma cadeia de conhecimentos que vão se juntando com outros e, de repente, passa-se da condição de “eu não sabia” para “agora eu já sei”. É desse jeito que você deve encarar o seu aprendizado em Desenho Geométrico. Leia cada capítulo atentamente, procurando fazer uma idéia teórica do item abordado. Organize as coisas de forma lógica. Lembre-se sempre que a parte teórica é de fundamental importância para se compreender a parte prática, portanto, nunca a despreze. Esse é um dos erros mais graves que as pessoas cometem. Qualquer atividade, por mais prática que seja, tem sempre um fundamento teórico que lhe orienta. Quer ver uma coisa? Quando damos uma simples caminhada estamos praticando uma série de atividades relacionadas a diversas ciências e suas teorias. Primeiro, temos que ter equilíbrio para ficarmos em pé; a Física explica isso, mas a Anatomia também está presente, não é? E a “ordem” para impulsionar os passos? Olha aí o nosso sistema nervoso, comandado pelo cérebro! E o impulso? Olha a Física de novo. E por que caminhamos eretos? A História e a Antropologia têm uma longa conversa para explicar isso. Portanto, não esqueça nunca de que a teoria sempre acompanha a prática, e que ela ajuda na compreensão do que estamos fazendo e o porquê de estarmos fazendo. Leia os capítulos tantas vezes quanto achar necessário, até entender a mensagem. Tire as dúvidas com o professor, com colegas e em livros. Faça os exercícios, procurando entender a seqüência lógica da resolução. Leia os enunciados atentamente, organizando as idéias e visualizando a solução. Todas as construções e exercícios apresentam um roteiro de resolução, mas, tente primeiro obter a sua solução. Para isso, temos que ter domínio do assunto, o que só se consegue estudando. Repita as construções até conseguir um completo entendimento e clareza do traçado. E não desista. Nós apostamos no seu sucesso! SUGESTÕES PARA O ESTUDO DE DESENHO GEOMÉTRICO UEPA – Universidade do Estado do Pará 6 1) Lápis ou lapiseira: Apresentam internamente o grafite ou mina, que tem grau de dureza variável, classificado por letras, números ou a junção dos dois. Classificação por números Classificação por letras Classif. por nº e letras Nº 1 – Macio – Linha cheia Nº 2 – Médio – Linha média Nº 3 – Duro – Linha fina B – Macio – Equivale ao grafite nº 1 HB – Médio – Equivale ao grafite nº 2 H – Duro – Equivale ao grafite nº 3 2B, 3B...até 6B – Muito macios 2H, 3H...até 9H – Muito duros As lapiseiras apresentam graduação quanto à espessura do grafite, sendo as mais comumente encontradas as de número 0,3 – 0,5 – 0,7 e 1,0. 2) Papel: Blocos, cadernos ou folhas avulsas (papel ofício) de cor branca e sem pautas. 3) Régua: Em acrílico ou plástico transparente, graduada em cm (centímetros) e mm (milímetros) 4) Par de esquadros: Em acrílico ou plástico transparente e sem graduação. O esquadros são destinados ao traçado e não para medir, o que deve ser feito com a régua. Um deles tem os ângulos de 90°, 45° e 45° e o outro os ângulos de 90°, 60° e 30°. Os esquadros formam um par quando, dispostos como na figura, têm medidas coincidentes. 5) Borracha: Branca e macia, preferencialmente de plástico sintético. Para pequenos erros, usa- se também o lápis-borracha. OS INSTRUMENTOS DE DESENHO Para estudar e praticar o Desenho Geométrico que tal você conhecer os instrumentos necessários para por em em prática tudo o vamos aprender para isto são necessários os seguintes instrumentos: UEPA – Universidade do Estado do Pará 9 2. ENTES GEOMÉTRICOS Ao final desta unidade, você estará apto a: - Identificar os entes geométricos; - Descrever e representar os entes geométricos; O entes geométricos são conceitos primitivos e não têm definição. É através de modelos comparativos que tentamos explica-los. São considerados como elementos fundamentais da Geometria, e são: Ponto – Conforme já dito, não tem definição. Além disso, não tem dimensão. Graficamente, expressa-se o ponto pelo sinal obtido quando se toca a ponta do lápis no papel. É de uso representa-lo por uma letra maiúscula ou algarismos, em alguns casos. Sua representação também se dá pelo cruzamento de duas linhas, que podem ser retas ou curvas. Linha – É o resultado do deslocamento de um ponto no espaço. Em desenho é expressa graficamente pelo deslocamento do lápis sobre o papel. A linha tem uma só dimensão: o comprimento. Podemos interpretar a linha como sendo a trajetória descrita por um ponto ao se deslocar. O Plano – É outro conceito primitivo. Através de nossa intuição, estabelecemos modelos comparativos que o explicam, como: a superfície de um lago com sua águas paradas, o tampo de uma mesa, um espelho, etc. À esses modelos, devemos acrescentar a idéia de que o plano é infinito. O plano é representado, geralmente, por uma letra do alfabeto grego. Reta – Pelas características especiais deste ente geométrico e sua grande aplicação em Geometria e Desenho, faremos seu estudo de forma mais detalhada a seguir. UEPA – Universidade do Estado do Pará 10 3. RETA Ao final desta unidade, você estará apto a: - Definir reta e semi-retas; - Definir segmentos colineares e consectivos; - Identificar a posição de uma reta e a posição relativa de duas retas. A reta não possui definição, no entanto, podemos compreender este ente como o “resultado do deslocamento de um ponto no espaço, sem variar a sua direção”. A reta é representada por uma letra minúscula e é infinita nas duas direções, isto é, devemos admitir que o ponto já vinha se deslocando infinitamente antes e continua esse deslocamento infinitamente depois. Por um único ponto passam infinitas retas, enquanto que, por dois pontos distintos, passa uma única reta. Por uma reta passam infinitos planos. Da idéia de reta, originam-se outros elementos fundamentais para o Desenho Geométrico: 3.1. SEMI-RETA: É o deslocamento do ponto, sem variar a direção, mas tendo um ponto como origem. Portanto, a semi-reta é infinita em apenas uma direção. Um ponto qualquer, pertencente a uma reta, divide a mesma em duas semi-retas. UEPA – Universidade do Estado do Pará 11 Semi-reta de origem no ponto A e que passa pelo ponto B (figura 1) Semi-reta de origem no ponto C e que passa pelo ponto D (figura 2) Um ponto qualquer, pertencente a uma reta, divide a mesma em duas semi-retas. 3.2. SEGMENTO DE RETA – É a porção de uma reta, limitada por dois de seus pontos. O segmento de reta é, portanto, limitado e podemos atribuir-lhe um comprimento. O segmento é representado pelos dois pontos que o limitam e que são chamados de extremidades. Ex: segmento AB, MN, PQ, etc. 3.3. SEGMENTOS COLINEARES – São segmentos que pertencem à mesma reta, chamada de reta suporte. 3.4 - SEGMENTOS CONSECUTIVOS – São segmentos cuja extremidade de um coincide com a extremidade de outro. 3.5. RETAS COPLANARES – São retas que pertencem ao mesmo plano. 3.6 - RETAS CONCORRENTES – São retas coplanares que concorrem, isto é, cruzam-se num mesmo ponto; sendo esse ponto comum às duas retas. Figura 1 Figura 2 UEPA – Universidade do Estado do Pará 14 Comentário: Os raios B1 e B2 são iguais, da mesma maneira que 13 e 23. Daí os pontos B e 3 definirem nossa perpendicular. c) Perpendicular que passa pela extremidade de um segmento de reta 1º Método: Seja o segmento de reta AB 1) Centro em uma das extremidades, abertura qualquer, traça-se o arco que corta o segmento, gerando o ponto 1. 2) Com a mesma abertura, e com centro em 1, cruza-se o primeiro arco, obtendo-se o ponto 2. 3) Centro em 2, ainda com a mesma abertura, cruza-se o primeiro arco, obtendo-se o ponto 3. 4) Continuando com a mesma abertura, centra-se em 2 e 3, cruzando estes dois arcos e determinando o ponto 4. 5) Nossa perpendicular é a reta que passa pela extremidade escolhida e o ponto 4. Comentário: Nesta construção, mantemos a mesma abertura (raio) do compasso durante todo o processo. Dessa forma, as distâncias entre a extremidade escolhida e os pontos 2 e 3 são iguais, assim como 24 e 34. A igualdade entre todas as distâncias justifica o traçado. Note ainda que a extremidade escolhida e os pontos 2, 4 e 3 formam um losango, figura geométrica que estudaremos mais adiante. 2º Método: Basta lembrar que todo segmento de reta é uma parte limitada de uma reta, que é infinita. Assim sendo, podemos prolongar o segmento em qualquer uma de suas extremidades, raciocinando-se então como se estivéssemos trabalhando com uma reta e a extremidade do segmento como um ponto que pertence a esta mesma reta, o que nos leva ao caso a ( perpendicular que passa por um ponto qualquer, pertencente a uma reta ), já estudado. UEPA – Universidade do Estado do Pará 15 3º Método: Seja o segmento DE 1) Numa região próxima à extremidade escolhida ( D, por exemplo ) assinala-se o ponto O. 2) Centro em O, raio OD, traça-se uma circunferência que cruza o segmento, determinando o ponto 1. 3) Traça-se a reta que passa em 1 e em O, e que corta a circunferência em 2.( Note que o segmento 12 representa o diâmetro da circunferência ). 4) A perpendicular é a reta que passa pela extremidade escolhida (D) e o ponto 2. Comentário: Os pontos D, 1 e 2 formam um triângulo. O lado 12 deste triângulo é também o diâmetro da circunferência que o circunscreve. O ponto D é um ponto que pertence à circunferência. Portanto, nosso triângulo é retângulo, o que torna válida a solução. d) Perpendicular que passa pelo ponto médio de um segmento de reta (Mediatriz) 1) Centro em uma das extremidades, com abertura maior que a metade do segmento, traça-se o arco que percorre as regiões acima e abaixo do segmento. 2) Com a mesma abertura, centra-se na outra extremidade e cruza-se com o primeiro arco, nos pontos 1 e 2. A Mediatriz é a reta que passa pelos pontos 1 e 2. Comentário: As distâncias entre as extremidades do segmento e os pontos 1 e 2 são todas iguais, fazendo com que a reta que passa por 1 e 2, além de ser perpendicular, cruze o mesmo exatamente no seu ponto médio. Portanto, nossa mediatriz tem uma propriedade: dividir um segmento em duas partes iguais. UEPA – Universidade do Estado do Pará 16 4.2. TRAÇADO DE PARALELAS a) Caso geral: Paralela que passa por um ponto qualquer não pertencente a uma reta Sejam a reta r e o ponto E, fora da reta. 1) Centro em E, raio (abertura) qualquer, traça-se o arco que cruza a reta em 1. 2) Com a mesma abertura, inverte-se a posição, ou seja, centro em 1, raio 1E, traça-se o arco que vai cruzar a reta no ponto 2. Com a ponta seca do compasso em 2, faz-se abertura até E, medindo-se, portanto esse arco. 4) Transporta-se, então, a medida do arco 2E a partir de 1, sobre o primeiro arco traçado, obtendo-se o ponto 3. 5) Nossa paralela é a reta que passa pelos pontos 3 e E. b) Traçado de uma paralela a uma distância determinada de uma reta Neste caso, temos que primeiramente estabelecer a distância pretendida, o que equivale dizer que temos que determinar a menor distância entre as retas, então: 1) Por um ponto qualquer (A) da reta, levanta-se um perpendicular (vide o caso específico no estudo das perpendiculares). 2) Sobre a perpendicular mede-se a distância determinada (5 cm), a partir do ponto escolhido (A), obtendo-se o segmento de reta AB, igual a 5 cm. 3) Procede-se, então, como no caso anterior, pois temos, agora, uma reta e um ponto (B), fora desta, ou: 4) Se, pelo ponto B, traçarmos uma perpendicular à reta que contém esse segmento, ela será paralela à primeira reta. UEPA – Universidade do Estado do Pará 19 d) Neste último caso, marca-se um ponto de referência na graduação e traça-se o lado, partindo do vértice e passando pelo ponto. e) Completa-se o traçado com um arco com centro no vértice e cortando os dois lados com as extremidades em forma de setas. Então, escreve-se o valor do ângulo neste espaço, que corresponde à sua abertura. Obs: Este último passo (item e) é de suma importância, pois indica a região que representa o ângulo (região angular). Veremos em seguida alguns exemplos de medidas de ângulos com o transferidor. Observe que o processo é o mesmo, tanto para a medição, quanto para a construção e, com o transferidor, podemos construir ou medir qualquer ângulo, qualquer que seja a sua abertura. Vejamos então os exemplos e em seguida você pode criar os seus próprios, observando os mesmos procedimentos. Vamos lá, então ! a) Ângulo de 105° b) Ângulo de 55° c) Ângulo de 90° d) Ângulo de 75° e) Ângulo de 25° f) Ângulo de 175° 5.6. CLASSIFICAÇÃO: 5.6.1. Quanto à abertura dos lados: a) Reto: Abertura igual a 90° b) Agudo: Abertura menor que 90° UEPA – Universidade do Estado do Pará 20 c) Obtuso: Abertura maior que 90° d) Raso: Abertura igual a 180° e) Pleno: Abertura igual a 360° f) Nulo: Abertura igual a 0° g) Congruentes: Dois ou mais ângulos são congruentes quando têm aberturas iguais. 5.6.2 - Quanto à posição que ocupam: a) Ângulo Convexo: Abertura maior que 0° e menor que 180° b) Ângulo Côncavo: Abertura maior que 180° e menor que 360° UEPA – Universidade do Estado do Pará 21 5.7. POSIÇÕES RELATIVAS DOS ÂNGULOS: a) Ângulos consecutivos: Quando possuem em comum o vértice e um dos lados. b) Ângulos adjacentes: São ângulos consecutivos que não têm pontos internos comuns. c) Ângulos opostos pelo vértice: Ângulos congruentes cujos lados são semi-retas opostas. d) Ângulos complementares: Dois ângulos são complementares quando a soma de suas medidas é igual a 90°. UEPA – Universidade do Estado do Pará 24 b) 45° Traça-se um ângulo de 90° e em seguida sua bissetriz, obtendo-se assim duas partes de 45°. c) 60° Traça-se um lado, posicionando-se o vértice. Centro no vértice, abertura qualquer, traça-se um arco que corta o lado já traçado, definindo o ponto 1. Centro em 1, com a mesma abertura, cruza- se o arco já traçado, obtendo-se o ponto 2. Partindo do vértice e passando pelo ponto 2, traçamos o outro lado do ângulo. d) 30° Traça-se um ângulo de 60° e em seguida a sua bissetriz. e) 15° Traça-se um ângulo de 60° e em seguida a sua bissetriz, obtendo-se 30°. Traçamos, então a bissetriz de 30°, chegando aos 15°. UEPA – Universidade do Estado do Pará 25 f) 120° Traça-se um lado, posicionando-se o vértice. Centro no vértice, abertura qualquer, traça-se um arco que corta o lado já traçado, definindo o ponto 1. Centro em 1, com a mesma abertura, cruza- se o arco já traçado, obtendo-se o ponto 2. Centro em 2, ainda com a mesma abertura, cruza-se o arco, obtendo-se 3. Partindo do vértice e passando pelo ponto 3, traça-se o outro lado do ângulo. g) 150° Procede-se como no traçado do ângulo de 120°, até definir o ponto 3. Com centro em 3 e ainda com a mesma abertura sobre o mesmo arco obtém-se o ponto 4. Este ponto (4), unido ao vértice, forma 180°. Como já vimos, o ponto 3 e o vértice formam 120°; logo, entre 3 e 4, temos 60°. Traçando-se a bissetriz entre 3 e 4, obteremos 30° que, somados aos 120°, nos darão os 150°. h) 105° UEPA – Universidade do Estado do Pará 26 Já vimos que o traçado de 120° é como se traçássemos 60° mais 60°. Pois bem; um desses 60°, pelo traçado da bissetriz pode ser dividido em dois de 30°. E, de dois de 30°, podemos obter quatro de 15°. Assim, subtraindo-se um desses 15° de 120°, chegamos a 105°. i) 75° Pelo mesmo raciocínio anterior. Só que agora somamos 15° a 60°, obtendo-se 75°. j) 135° Um ângulo de 45°, adjacente a um ângulo de 90° totalizará 135°. UEPA – Universidade do Estado do Pará 29 c) Escaleno: É o triângulo que tem os três lados e os três ângulos diferentes. 6.3.2. Quanto aos ângulos: a) Triângulo retângulo: É o triângulo que possui um ângulo reto. b) Triângulo acutângulo: É o triângulo que possui os três ângulos agudos (menores que 90°). c) Triângulo obtusângulo: É o triângulo que tem um ângulo obtuso (maior que 90°). UEPA – Universidade do Estado do Pará 30 6.4. LINHAS NOTÁVEIS DOS TRIÂNGULOS: (também chamadas de cevianas dos triângulos) a) Altura: É a distância entre um vértice e o lado oposto. Entenda-se que uma distância é tomada em linha reta, partindo-se de um ponto (vértice) até um segmento de reta (lado do triângulo) em posição perpendicular (entre a altura e o lado). As alturas cruzam-se num ponto comum chamado Ortocentro. Como os triângulos possuem três lados e três vértices, teremos, portanto, três alturas por triângulo. Para as traçarmos, consideraremos que cada lado do triângulo é um segmento, que pertence a uma reta suporte e cada vértice é um ponto que não pertence à esta reta, aplicando-se, então, o segundo caso do traçado de perpendiculares (perpendicular que passa por um ponto não pertencente a uma reta). Veremos também que, para cada formato ou classificação de triângulos o ortocentro (ponto de encontro) apresentar-se-á de maneira diferente, sendo: Em triângulos acutângulos: o ortocentro estará no interior do triângulo. Observe que traçamos primeiro a altura relativa ao lado AB, centrando em C e descrevendo o arco que definiu 1, no prolongamento de AB e 2 no próprio segmento AB. Com centro em 1 e 2, definimos 3 e a altura CH¹. Depois, traçamos a altura relativa a BC, centrando em A e traçando o arco que aproveita o próprio ponto C e define o ponto 4, sobre BC. Com centro em C e 4, definimos 5 e traçamos a altura AH². Com centro em B, definimos 6 e 7, sobre os prolongamentos de AC e, com centro em 6 e 7, obtivemos o ponto 8 e traçamos a altura BH³. UEPA – Universidade do Estado do Pará 31 Em triângulos obtusângulos: o ortocentro estará em região exterior ao triângulo. Note, neste caso, que prolongamos o lado AB, centramos em C, traçamos o arco que definiu 1 e 2, sobre o prolongamento; centramos em 1 e 2, com a mesma abertura, determinando 3 e traçamos a altura CH¹. Para o traçado da altura relativa ao lado BC o centro foi em A, traçando-se o arco que gerou 4 e 5, para, em seguida definir 6 e o traçado da altura AH². Finalmente, para o traçado da altura relativa ao lado AC, o centro foi em B, definindo 7 e 8 sobre o prolongamento de AC e, depois definindo 9, para o traçado da altura BH³. O ortocentro é resultado do cruzamento do prolongamento das três alturas. Lembre sempre que altura é uma distância, portanto tem uma medida, que corresponde a um segmento de reta, que pertence a uma reta suporte. Em triângulos retângulos: o ortocentro coincidirá com o vértice que corresponde ao ângulo reto. Neste caso, a altura relativa a cada cateto será o cateto adjacente. UEPA – Universidade do Estado do Pará 34 Para os traçados das mediatrizes os procedimentos continuam os mesmos dos casos anteriores. No entanto, notamos agora que o circuncentro coincide com o ponto médio do lado que corresponde à hipotenusa do triângulo. a) Bissetriz: É cada uma das retas que, passando pelo vértice, divide o ângulo que lhe corresponde em duas partes iguais. Seu ponto de cruzamento é o Incentro, eqüidistante dos lados e centro da circunferência inscrita no triângulo. Qualquer que seja o formato, o incentro estará sempre no interior do triângulo. Calma ! Não vamos nos assustar com tantas linhas e números. É só seguir o passo a passo. Vamos lá ! Os pontos 1, 2 e 3 definem a bissetriz do ângulo Â. Os pontos 4, 5 e 6 definem a bissetriz do ângulo B. E os pontos 7, 8 e 9 definem a bissetriz do ângulo C. O cruzamento dessas bissetrizes vai determinar o incentro, o ponto I. Para traçarmos a circunferência inscrita no triângulo, precisamos primeiro definir a distância entre o incentro e cada lado do triângulo. Essas distâncias são todas iguais, por definição. Assim, com centro em I, obtemos os pontos 10 e 11 e em seguida 12, para definirmos a distância até o lado AB. Sempre com centro em I, chegamos aos pontos 13, 14 e 15 e à distância ao lado BC. E, com os pontos 16, 17 e 18 temos a distância ao lado AC. Todas as distâncias correspondem ao raio da circunferência inscrita. UEPA – Universidade do Estado do Pará 35 b) Mediana: É o segmento de reta que une um vértice ao ponto médio do lado oposto de um triângulo. Seu ponto de encontro é o Baricentro, que divide cada uma das medianas na proporção de 1/3. Em todo triângulo o baricentro é ponto interior do mesmo. Para traçarmos as medianas temos que determinar primeiramente o ponto médio de cada lado do triângulo. Isso significa dizer que temos que traçar primeiro a mediatriz de cada lado. Feito isto, unimos o ponto médio de cada lado ao vértice oposto, obtendo-se as medianas. Desse jeito, MH é a mediana do lado FG, FN é a mediana do lado GH e GO é a mediana do lado FH. UEPA – Universidade do Estado do Pará 36 6.5. EXERCÍCIOS: 1) Construir um triângulo, conhecendo-se os três lados: 4, 5 e 7 cm. Resolução: Traça-se um dos lados e, com centro em cada extremidade, com aberturas respectivamente iguais aos outros lados, faz-se o cruzamento dos arcos, determinando o terceiro vértice e definindo a figura. 2)Construir um triângulo eqüilátero, conhecendo-se a altura: 5 cm. Resolução: a) Traça-se uma semi-reta e, na origem, constrói-se um ângulo de 60°. Traça-se a bissetriz do ângulo e, sobre esta, aplica-se a medida da altura. Pelo ponto assinalado, traça-se uma perpendicular à altura. Esta perpendicular, ao cortar os lados do ângulo, definirá o triângulo. b) Traça-se uma reta e, num ponto qualquer, levanta-se uma perpendicular e, sobre esta, marca- se a medida da altura. Pela extremidade da altura, traçam-se dois ângulos de 60°, um para cada lado da altura. Traça-se a bissetriz de cada ângulo que, ao cruzarem com a primeira reta traçada, definem o triângulo. UEPA – Universidade do Estado do Pará 39 8) Construir um triângulo retângulo, conhecendo-se a hipotenusa (7 cm) e um cateto (3 cm). Resolução: a) Traçam-se duas retas perpendiculares. Sobre uma delas aplica-se a medida do cateto (3 cm). Com centro na extremidade deste e abertura igual à medida da hipotenusa, cruza- se sobre a outra perpendicular, definindo o outro cateto e completando-se a figura. b) Traça-se a hipotenusa (7 cm) e determina-se o seu ponto médio, através do traçado de sua mediatriz. Centro no ponto médio, traça-se a semicircunferência que tem a hipotenusa como diâmetro. Centro em uma das extremidades, abertura igual ao cateto, cruza-se sobre a semicircunferência, determinando-se o vértice de ângulo reto, completando-se a figura. 9) Construir um triângulo isósceles, conhecendo-se a base (4 cm) e a altura (5 cm). Resolução: Traça-se a base (4 cm) e sua mediatriz. Sobre esta, marca-se a medida da altura. Une- se a extremidade da altura às extremidades das bases, definindo-se os lados iguais. UEPA – Universidade do Estado do Pará 40 7. QUADRILÁTEROS Ao final desta unidade, você estará apto a: - Definir e classificar paralelogramos; - Traçar os paralelogramos; - Traça trapézios. 7.1. DEFINIÇÃO: São os polígonos de quatro lados. 7.2. ELEMENTOS: - Lados: AB, BC, CD e AD. - Vértices: A, B, C e D. - Ângulos: Â, B, C e D. - Diagonais: Segmentos que unem dois vértices opostos. São os segmentos AC e BD. 7.3. CLASSIFICAÇÃO: 7.3.1. Paralelogramos: São quadriláteros que têm os lados opostos paralelos. São o: a) Quadrado: É o paralelogramo que tem os quatro lados iguais e os quatro ângulos retos (90°). Suas diagonais são iguais e cruzam-se também a 90°. Uma diagonal é mediatriz da outra, o que significa dizer que seu ponto de cruzamento eqüidista dos vértices, sendo, portanto o centro da circunferência que circunscreve o quadrado. Este ponto é também eqüidistante dos lados da figura, o que permite a inscrição da circunferência no quadrado. Para este traçado, precisamos primeiramente definir a distância entre o ponto e o lado (raio da circunferência), traçando a perpendicular que passa pelo ponto e atinge o lado. UEPA – Universidade do Estado do Pará 41 Para a construção do quadrado, traçamos primeiramente o lado AB. Pela extremidade A, levantamos uma perpendicular. O tamanho do lado (AB) é rebatido sobre a perpendicular, definindo D. Para isto, centramos em A e fazemos abertura até B. Com a mesma abertura AB, fazemos centro em B e D e, pelo cruzamento dos arcos, definimos o ponto C, completando a figura. Traçamos, então, as diagonais AC e BD e o cruzamento destas define o ponto O. Com centro em O e abertura até qualquer dos vértices descrevemos a circunferência que circunscreve o quadrado. b) Retângulo: É o paralelogramo que tem os lados opostos iguais dois a dois e os quatro ângulos retos. Suas diagonais são iguais e cortam-se num ângulo qualquer, diferente de 90°. Este ponto divide ambas em duas partes iguais, sendo, desse modo, eqüidistante dos vértices, tornando o retângulo inscritível na circunferência. Para a construção do retângulo, traçamos o lado EF. Pela extremidade E, levantamos uma perpendicular. Sobre esta, aplicamos a medida do lado (que não pode ser igual à EF), definindo então EH. Tomamos, então a distância EF no compasso e traçamos o arco com centro em H. Este arco vai cruzar com o arco de abertura EH e centro em F, definindo o ponto G, completando a figura. Traçamos, então as diagonais e, com centro no ponto de cruzamento das mesmas (O), descrevemos a circunferência. UEPA – Universidade do Estado do Pará 44 A altura de qualquer trapézio é sempre perpendicular às bases, ou à reta que as contém. No exemplo, traçamos a base maior (EF) e sua mediatriz e, sobre esta, definimos a altura. Traçamos então uma perpendicular à altura. Esta perpendicular é paralela à base maior. Tomando-se a medida dos lados não paralelos no compasso, fazemos centro em cada extremidade da base maior e aplicamos esta medida sobre a base menor, definindo os pontos G e H e completando a figura. Traçamos, então, as mediatrizes dos lados não paralelos EH e FG. As mesmas cruzam-se no mesmo ponto, sobre a mediatriz das bases maior e menor. Todas as mediatrizes, portanto, têm o ponto O como ponto comum. Este ponto é o centro da circunferência que circunscreve o trapézio isósceles. c) Trapézio escaleno: É o trapézio que tem os lados não paralelos diferentes e não possui ângulo reto. UEPA – Universidade do Estado do Pará 45 7.3.3. Trapezóides: São quadriláteros que não têm lados paralelos. Os trapezóides podem ser inscritíveis numa circunferência desde que seus ângulos opostos sejam suplementares, isto é, sua soma seja igual a 180°. No trapezóide WXYZ, a soma dos ângulos W e Y é igual a 180°, o que implica que a soma de X e Z também tenha esse valor, fazendo com que o trapezóide seja inscritível. UEPA – Universidade do Estado do Pará 46 7.4. EXERCÍCIOS: 1) Construir um quadrado de lado igual a 6 cm. Resolução: Traça-se o lado. Por uma das extremidades, levanta-se uma perpendicular e, sobre esta, transporta-se a medida do lado, centrando-se na extremidade, com abertura correspondente ao lado, rebatendo-se a distância sobre a perpendicular. A partir daqui, temos três alternativas. a) Pela outra extremidade, repete-se todo o processo anterior. Fecha-se a figura unindo as extremidades dos dois lados traçados. b) Pela extremidade do lado rebatido, traça-se uma paralela ao primeiro lado. Aplica-se então a medida do lado sobre a paralela e traça-se o lado restante. c) Após definidos dois lados, centramos nas extremidades desses dois lados, com abertura igual à medida dos lados e cruzamos dois arcos que definirão o ponto que completará a figura.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved