MODELOS MATEMÁTICOS E MODELOS MENTAIS: inferindo possíveis relações durante a modelagem matemática de fenômenos físicos

MODELOS MATEMÁTICOS E MODELOS MENTAIS: inferindo possíveis relações durante a...

(Parte 1 de 2)

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

Modelos Matemáticos e Modelos Mentais: inferindo Possíveis

Relações Durante a Modelagem Matemática de Fenômenos Físicos

Autor: Ednilson Sergio Ramalho de Souza Orientador: Adilson Oliveira do Espírito Santo

Resumo

O objetivo dessa pesquisa é detectar, à luz da teoria dos Modelos Mentais de Johnson-Laird, possíveis representações mentais (representações proposicionais, modelos mentais e imagens mentais) formadas durante o processo de modelagem matemática de fenômenos físicos, assim como inferir de que modo essas representações relacionam-se aos modelos matemáticos produzidos. Com base nos protocolos verbais obtidos em situação de interlocução entre o primeiro autor deste trabalho e uma estudante egressa do ensino médio de uma escola pública de Belém/Pa, durante o processo de modelagem matemática do tema Energia Mecânica; tentou-se inferir qual a relação entre os prováveis modelos mentais formados pela estudante e os modelos matemáticos produzidos pela mesma. Em primeira análise, pôde-se observar que os modelos matemáticos produzidos pela discente estavam fortemente ligados aos modelos mentais formados durante a modelagem matemática. Desta maneira, a análise dos modelos matemáticos produzidos deu “pistas” sobre a qualidade dos modelos mentais formados e sobre compreensão dos conceitos envolvidos na modelagem matemática. Os modelos matemáticos mantêm, portanto, uma relação dialética com os modelos mentais.

Palavras-chave: Modelos Matemáticos. Modelos Mentais. Modelagem Matemática. Fenômenos Físicos.

Introdução

Quando observamos algum aspecto da realidade1 , psicologicamente, estamos reproduzindo mentalmente essa realidade, ou seja, construindo uma representação interna dela “As pessoas não captam o mundo exterior diretamente, elas constroem representações mentais (quer dizer, internas) dele” (MOREIRA, 1996, p. 193). Johnson-

1 Entendemos por realidade qualquer tipo de percepção consciente ou inconsciente pelo sujeito.

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

Laird (1983) propõe, no geral, três tipos de representações mentais: representações proposicionais, modelos mentais e imagens mentais.

As representações proposicionais são representações mentais criadas segundo regras rígidas de formação, segundo a sintaxe da sentença (proposição), são totalmente abstraídas do que está explícito no texto da situação, são verbalmente expressáveis “para ele [Johnson-Laird], proposições são representações de significados, totalmente abstraídas, que são verbalmente expressáveis (MOREIRA op. cit., p. 194)

Os modelos mentais são representações mentais que se parecem (são análogos, semelhantes) aos fenômenos2 do mundo. Ou seja, são análogos estruturais do mundo,

“Modelo mental é uma representação interna de informações que corresponde, analogamente, ao estado de coisas que estiver sendo representado, seja qual for ele. Modelos mentais são análogos estruturais do mundo” (ibid., 1996, p. 197).

Borges (1996) diz que os modelos mentais são formados no ato da compreensão de uma situação ou de um problema. Esses modelos mentais são criados com base no nosso conhecimento prévio, nossa experiência, nossas habilidades e nossas capacidades.

Para Johnson-Laird, imagens mentais são representações mentais particulares

(vistas de um certo ângulo) de modelos mentais (ibid.),

“Portanto, na perspectiva de Johnson-Laird, representações proposicionais são cadeias de símbolos que correspondem à linguagem natural, modelos mentais são análogos estruturais do mundo e imagens são modelos vistos de um determinado ponto de vista” (p. 195).

A modelagem matemática no ensino pode ser entendida como um conjunto de atitudes que visam à obtenção de um modelo matemático, o qual servirá para resolver uma determinada classe de problemas. Um modelo matemático pode ser expresso sob a forma de uma equação (algébrica, diferencial, integral, etc), de um gráfico, de uma tabela, de uma função, de um programa computacional, entre outros (BIEMBENGUT E HEIN 2003, p. 12).

Relacionar os modelos matemáticos aos modelos mentais formados durante o processo de modelagem matemática torna-se pertinente para avaliar o grau de compreensão do aluno quando em atividade de modelagem. Os autores acima citados propõem, basicamente, três etapas para a efetivação da modelagem matemática no processo de ensino-aprendizagem: Interação (reconhecimento da situação-problema e familiarização com o assunto a ser modelado, ou seja, com o referencial teórico);

2 Entendemos por fenômeno tudo que é percebido pelos sentidos ou pela consciência.

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

Matematização (formulação de problemas que gerarão hipóteses e resolução do problema em termos de modelo); Modelo matemático (interpretação da solução e validação do modelo que será feita mediante uma avaliação). (ibid., p. 13-14).

O objetivo da pesquisa ora apresentada é tentar inferir qual a relação entre os modelos mentais formados por uma estudante egressa do ensino médio durante a modelagem matemática de situações físicas e os modelos matemáticos produzidos pela mesma, em situação de interlocução com o primeiro pesquisador. Justificativa

Durante um processo de modelagem matemática é preciso estar atento para os conceitos que o aluno trás para a sala de aula em sua bagagem cognitiva prévia. Esses conceitos vão interferir diretamente na compreensão sobre um determinado problema. Saber como o aluno está compreendendo um problema é muito importante, pois o professor poderá tomar decisões e atitudes no sentido de fornecer ao aluno condições de adquirir conceitos cientificamente aceitos. O estudo dos modelos mentais formados pelos alunos durante a modelagem matemática poderia ajudar o professor a conduzir melhor as atividades de modelagem. Esse estudo poderia ser feito através da análise dos modelos matemáticos produzidos pelos discentes durante o processo de modelagem matemática. Deste modo, faremos nossa pesquisa baseando-nos na seguinte problemática: qual a relação entre os modelos mentais formados e os modelos matemáticos produzidos pelos estudantes durante um processo de modelagem matemática de uma situação física?

Objetivos Geral

• Detectar possíveis representações mentais de Johnson-Laird (representações proposicionais, modelos mentais e imagens mentais) formadas durante o processo de modelagem matemática de fenômenos físicos, relacionando-as aos modelos matemáticos produzidos.

Específicos

• Propor atividades de modelagem matemática, em situação de interlocução, para fenômenos físicos da mesma classe;

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

• Obter protocolos (verbais, escritos e pictóricos) das manifestações dos alunos durante o processo de modelagem matemática de situações físicas;

• Analisar esses protocolos à luz da teoria dos modelos mentais de Johnson-Laird;

• Detectar possíveis representações proposicionais, imagens mentais e modelos mentais;

• Verificar de que maneira os modelos matemáticos produzidos durante o processo de modelagem matemática do fenômeno físico relacionam-se às representações mentais detectadas;

• Propor considerações visando à melhoria da aquisição de conceitos científicos pelos estudantes durante a dinâmica da modelagem matemática;

• Alencar atitudes docentes e discentes que visem à qualidade do ensinoaprendizagem através da modelagem matemática, em especial no ensino de Física.

Metodologia

A pesquisa foi realizada em três momentos interlocutivos com duração de 50 minutos em média cada um, em que se procurou analisar possíveis representações mentais formadas por uma estudante egressa do nível médio. Essas interlocuções geraram protocolos verbais que foram transcritos e analisados. No primeiro momento fez-se a interação com o tema Energia Mecânica juntamente com a apresentação das situações que posteriormente foram matematizadas. Essa familiarização com o assunto constou de pesquisas, explicações e diálogos entre o pesquisador e a estudante a respeito dos conceitos de energia cinética e energia potencial gravitacional, sempre privilegiando a troca de significados destes conceitos. No segundo momento foram matematizadas as situações apresentadas no primeiro momento (da interação com o tema) visando à produção de um modelo matemático. No terceiro momento foram propostos três problemas3 (P1, P2 e P3) correspondendo, respectivamente, às situações (S1, S2 e S3) para a estudante validar ou não os modelos matemáticos encontrados. Finalmente, procurou- se estabelecer relações entre os modelos matemáticos encontrados e as possíveis representações mentais detectadas.

3 Ver anexo.

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

Análise de resultados

Nesta seção vamos analisar trechos de interlocuções feitas durante a modelagem matemática do tema energia mecânica. O objetivo foi detectar possíveis representações mentais (representações proposicionais, imagens mentais e modelos mentais) e inferir a relação entre essas representações e os modelos matemáticos produzidos. Situação 1. Esta situação se refere a uma bola de massa m que, primeiramente encontra- se no chão em repouso (t1, ponto A) e, posteriormente encontra-se em repouso em cima de uma mesa de altura H (ponto B, t2).

chão, nível zero Ec=0, Epg=0, v=0 bola bola mesa

Fig. 1- Situação 1. Pesquisador: Essa energia dela ((da bola)) aqui em cima...((ponto B)) ela tem energia cinética?

Rosa: Não
Rosa: Porque pra ter energia cinética...o objeto tem que está se movendo
Rosa: Tem
Rosa: Porque ela está numa certa altura

Pesquisador: Por quê? Pesquisador: Certo...então não tem energia cinética...então nós vamos colocar bem aqui assim...((o pesquisador escreve no papel)) a energia cinética é zero...ela tem energia potencial gravitacional ((no ponto B da situação 1))? Pesquisador: Por quê? Pesquisador: Certo...então energia potencial aqui ((o pesquisador escreve no papel)) nós vamos falar assim...é diferente de zero...tá? Então qual é a energia total dela aqui em cima ((no ponto B))? Rosa: Há...é...eu acho que é...energia...cinética menos a energia potencial...

I SEMINÁRIO DE AVALIAÇÃO DE PESQUISA DA PÓS-GRADUAÇÃO EM EDUCAÇÃO EM CIÊNCIAS E MATEMÁTICAS – I SAPPECIM/NPADC/UFPA – DEZ. 2008

Percebe-se neste trecho que a estudante já possui um modelo mental funcional para representar a situação 1, pois a mesma consegue relacionar as duas formas de energia (cinética e potencial). O fato de a mesma ter deduzido o modelo matemático pode estar significando que o modelo mental construído por ela não está adequado: é preciso diferenciar ainda mais os conceitos envolvidos. Apesar de estar sendo funcional (eficiente), uma vez que a estudante pôde “rodar” o modelo mental em sua mente e inferir a relação apresentada entre as energias, ele não está sendo eficaz: esse modelo precisa evoluir para um modelo mental adequado.

A matematização de outras situações da mesma classe poderá favorecer a diferenciação dos conceitos (AUSUBEL et. al., 1980) e, por conseguinte, a formação de campos conceituais (VERGNAUD, 1990). Deste modo, a estudante poderá “melhorar” o modelo mental formado em busca de um modelo mental adequado. A representação semiótica expressa pelo modelo matemático poderia dar “pistas” que a estudante estaria formando um modelo mental adequado.

Situação 2. Esta situação é referente a uma bola de massa m que está em movimento em cima de uma mesa de altura H.

(Parte 1 de 2)

Comentários