Classificação das estruturas

Classificação das estruturas

III - CLASSIFICAÇÃO DAS ESTRUTURAS

3.1 Vínculos

Um vínculo impede a liberdade de um movimento. A ausência de certos vínculos possibilita a liberdade de certos movimentos.

Corpo rígido no plano:

Cada ponto isolado no plano possui dois graus de liberdade. Na figura abaixo o ponto A possui 2 vínculos e o ponto B dois vínculos (um externo e outro interno com A em função da rigidez do corpo), dois pontos vezes dois vínculos resulta quatro vínculos. Como um vínculo é eliminado pela rigidez do corpo resulta que um corpo no plano necessita apenas (2 x 2) - 1 = 3 vínculos para ser estático ou estarem em equilíbrio

Corpo rígido no espaço:

Cada ponto no espaço possui três graus de liberdade. Na figura abaixo o ponto A, B e C necessitam cada um três vínculos para ficarem estáticos. Mas como estão interligados por um corpo rígido este número de vínculos se reduz, pois a interligação entre os pontos AB, CB e CA eliminam três vínculos resultando (3 pontos x 3 vínculos = 9 vínculos) - 3 (da rigidez do corpo) = 6 vínculos. Assim sendo cada corpo no espaço necessita de seis vínculos para estar em equilíbrio.

3.2 Tipos de Ligação

a) PÊNDULO - Impede uma translação no sentido do seu eixo.

Pode ser substituído por um apoio móvel simples que impede uma translação no sentido normal ao seu plano de rolamento.

b) DOIS PÊNDULOS - Impedem qualquer translação permitindo rotação em torno do seu centro de rotação.

Pode ser substituído por uma rótula, ou um apoio articulado fixo.

c) TRÊS PÊNDULOS NÃO CONCORRENTES EM UM SÓ PONTO E NEM PARALELOS - Impedem qualquer movimento.

Internamente podem ser substituídos por uma ligação completa. Externamente pode ser representado por um engastamento.

Uma rótula elimina dois graus de liberdade para duas chapas, e mais dois graus de liberdade para cada chapa adicional.

3.3 Grau de Liberdade

O grau de liberdade de uma estrutura é determinado pela seguinte fórmula:

L = 3n - Sp - 2Sg - 3Se - 2(n' - 1)Sgn' - 3(n' -1)Sen'

Onde:

n = n° de chapas ( barras)

p = n° de apoios simples externos

g = n° de apoios fixos externos

e = n° de engastamentos externos

n' = n° de chapas interligadas numa articulação rotulada e/ou engastada.

Sgn'= n° de ligações internas por rótulas que ligam nas barras.

Sen'= n° de engastamentos para rótulas que ligam as barras.

3.4 Classificação das estruturas quanto ao grau de liberdade.

ESTRUTURA HIPOSTÁTICA - L > 0 (H < 0)

Grau de liberdade maior que zero (grande hipostaticidade). A estrutura tem possibilidade de movimento é portanto uma cadeia cinemática.

ESTRUTURA ISOSTÁTICA - L = 0 (H = 0)

Grau de liberdade igual a zero. A estrutura está em equilíbrio e o número de vínculos é o necessário.

ESTRUTURA HIPERESTÁTICA - L < 0 (H > 0)

Grau de liberdade menor que zero. A estrutura está em equilíbrio, o número de vínculos é maior que o necessário.

3.4.1 Exemplos: Determinar o grau de liberdade das seguintes estruturas:

1) n = 2

p = 1

g = 1

e = 0

n' = 2 Sgn' = 1

L = 3x2 - 2x1 - 3 x 0 - 2(2-1)x1 - 3(2-1)x0

L = 1 estrutura hipostática

2) n = 3

e = 0

g = 2

n'= 2 Sen' = 2

L = 3x3 - 0 - 2x2 - 0 - 3(2-1)x2

L = -1 estrutura hiperestática

3) n = 2

p = 1

g = 1

n' = 2 Sen' = 1

L = 3x2 - 1 - 2x1 - 0 - 3(2-1)x1

L = 0 estrutura isostática

Eliminado a ligação completa temos

n = 1

p = 1

g = 1

L = 3x1 -1 -2

L = 0 estrutura isostática

4) n = 1

e = 1

Sgn' = 0

Sen' = 0

L = 3x1 - 3x1

L = 0 estrutura isostática

5) n = 2

g = 2

p = 0

n' = 2 Sgn' = 1

L = 3x2 - 2x2 - 3x0 - 2(2-1)x1 - 3(2x1)x0

L = 0 estrutura isostática

6) n = 2

e = 0

g = 2

p = 0

n' = 2 Sgn' = 1

L = 3x2 - 0 - 2x2 - 3x0 - 2(2-1)x1

L = 0 estrutura isostática

Considerando a estrutura com 4 barras e 2 engastes

n = 4

e = 0

g = 2

p = 0

n' = 2 Sgn' = 1

n' = 2 Sen' = 2

L = 3x4 - 0 - 2x2 - 2(2-1)x1 - 3(2-1)x2

L = 0 estrutura isostática

7) n = 2

g = 2

n' = 2 Sgn' = 1

L = 3x2 - 0 - 2x2 - 2(2-1)x1

L = 0 estrutura isostática

8) n = 2

e = 0

p = 1

g = 1

n' = 2 Sgn' = 1

L = 3x2 - 1 - 2x1 - 2(2-1)x1

L = 1 estrutura hipostática

9) n = 3

p = 1

g = 1

e = 0

n' = 2 Sgn' = 2

L = 3x3 - 1 - 2x1 - 0 - 2(2-1)x2

L = 2 estrutura hipostática

10) n = 9

e = 0

p = 1

g = 1

n' = 3 Sgn3' = 3

n' = 2 Sgn2' = 2

n' = 5 Sgn5' = 1

L = 3x9 - 1 - 2 - 2(2-1)x2 - 2(3-1)x3 - 2(5-1)x1

L = 0 estrutura isostática

11) n = 1

e = 2

p = 0

g = 0

L = 3x1 - 3x2

L = -3 estrutura hiperestática

12) n = 5

e = 3

n' = 2 Sgn' = 2

n' = 3 Sgn' = 1

L = 3x5 - 3x3 - 2(2-1)x2 - 2(3-1)x1

L = -2 estrutura hiperestática

13) n = 3

e = 0

p = 3

g = 1

n' = 2 Sen' = 2

L = 3x3 - 3 - 2 - 3(2-1)x2

L = -2 estrutura hiperestática

14) n = 5

p = 3

g = 1

n' = 2 Sgn' = 2

n' = 2 Sen' = 2

L = 3x5 - 3 - 2x1 - 2(2-1)x2 - 3(2-1)x2

L = 0 estrutura isostática VIGA GERBER

Podemos ainda ter:

n = 3

p = 3

g = 1

n' = 2 Sgn' = 2

L = 3x3 - 3 - 2x1 - 2(2-1)x2

L = 0 estrutura isostática

15) n = 10

g = 1

e = 2

n' = 2 Sen' = 2

n' = 3 Sen' = 3

n' = 4 Sen' = 1

L = 3x10 - 2x1 -3x2 - 3(2-1)x2 - 3(3-1)x3 - 3(4-1)x1

L = -11 estrutura hiperestática

16) n = 7

p = 1

g = 1

n' = 2 Sen' = 4

n' = 3 Sen' = 2

L = 3x7 - 1 - 2x1 - 3(2-1)x4 - 3(3-1)x2

L = - 6 estrutura hiperestática

17) n = 9

p = 1

g = 4

n'= 2 Sgn'= 6

n'= 3 Sgn'= 1

n'= 4 Sgn'= 1

L = 3.9 - 1 - 2.4 - 2(2-1)6 - 2(3-1)1 - 2(4-1)1

L = -4 estrutura hiperestática

18) n = 3

p = 3

g = 1

e = 0

n'= 2 Sen'= 2

L = 3.3 - 3 - 2.1 - 3(2-1)2

L = -2 estrutura hiperestática

19) n = 11

p = 1

g = 5

e = 0

n'= 2 Sgn'= 5

n'= 3 Sgn'= 1

n'= 4 Sgn'= 2

L = 3.11 - 1 - 2.5 - 3.0 - 2(2-1)5 - 2(3-1)1 - 2(4-1)2

L = -4 estrutura hiperestática.

20) n = 20

p = 1

g = 1

e = 1

n'= 2 Sgn'= 9

n'= 3 Sgn'= 2

n'= 2 Sen'= 5

n'= 3 Sen'= 3

L = 3.20 - 1.1 - 2.1 - 3.1 - 2(2-1)9 - 2(3-1)2 - 3(2-1)5 - 3(3-1)3

L = -5 estrutura hiperestática.

21) n = 14

p = 1

g = 0

e = 1

n'= 2 Sgn'= 2

n'= 3 Sgn'= 3

n'= 4 Sgn'= 2

n'= 5 Sgn'= 1

n'= 2 Sen'= 1

L = 3.14 - 1.1 - 2.0 - 3.1 -2(2-1)2 - 2(3-1)3 - 2(4-1)2 - 2(5-1)1 - 3(2-1)1

L = -1 estrutura hiperestática externamente.

3.5 Tipos de apoios e respectivas reações

1° CASO - Apoio sobre rolos (apoio móvel)

2° CASO - Apoio constituído por um eixo (apoio articulado fixo)

3° CASO - Apoio constituído por um engastamento

4° CASO - Apoio constituído por dois pêndulos paralelos

5° CASO - Pêndulos associados

3.6 Representação de apoios

a) Apoio simples

b) Apoio articulado fixo

c) Engastamento

d) Apoio pendular

Comentários