Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Munson Fundamentals Of Fluid Mechanics 5th Chap12, Exercícios de Engenharia Mecânica

Exercícios resolvidos do Capitulo 12 do Livro Mecânica dos Fluidos - Munson. Material muito bom para o estudo de provas!

Tipologia: Exercícios

Antes de 2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 18/10/2006

gabriel-del-bianco-madureira-7
gabriel-del-bianco-madureira-7 🇧🇷

4.9

(23)

44 documentos

1 / 84

Documentos relacionados


Pré-visualização parcial do texto

Baixe Munson Fundamentals Of Fluid Mechanics 5th Chap12 e outras Exercícios em PDF para Engenharia Mecânica, somente na Docsity! 12 124 Water flows through a rotating sprinkler arm as shown in Fig. P12.1 and Vídeo V12.2, Determine the flowrate if the angular velocity. is 150 rpm. Friction is negligible. Is this a tur- bine or a pump? What is the maximum angular velocity for this flowrate? T=mriVoa-r Va) =O since there is no friction. Also, Va=0 fence, Voz =0 [sn Ve wn u 2 27rady mino = 5a rev Lev =) =916 É te 70 à Thus, H FIGURE P12.1 W smo = U, Dr, Q16Ê act b= ing “TSE Hence, Q=2Wh Ay =2(Z(22 8) (9758) = 0.00958 É = 4.3 gal/min This às a turbne because the sprinider moves im response to Fluiá Flow forces. since trichon is negligróle the maximum angular velocity Lo Pais Frowrate is the me corresprnding o 152 rpm or w (10 rev 6” 24) rad (eeiz 18.7 pin (> 5 == 1200 12.2, 122 Water flows axially up the shaft and out through the two sprinkler arms as sketched in Fig. P12.1 and as shown in Video V 12.2, With the help of the moment-of-momentum equa- tion explain why, at a threshold amount of water flow, the sprin- kler arms begin to rotate. What happens when the flowrate in- creases above this threshold amount? a FIGURE Pi2.t 4 Tais sprinhler às similar fo the enc of Example 5:18. 7hus, nata É “Yam Prom the velvei ty Priangle showa tn the shetel, abwe, we conclude Thar VE (msm 70º - UV) where -r UV = hã Comb rning, we get =-K (W, sin 70º. eo ) Tuatt 2 2 2 So when W is large enonçh with = 0 fo overiom 4 Z &º he sprinhler rotor begias £ rotate. e nhem Flowrate «ncreases further, w is no longey zero : T negtrgi bh And unth pato 9h grbly small, Wo sm 7o rt amd o vicreases with merease 0? W, anh) a? maximum, vame of W, stwe alo have maximum value of (o. 12-14 (2.4 | (Cont) Since the (ift force acting on each rotw blade sechon e in the same direchon as the blade velocity we conclude that his tfurtomachine is a FJurbine.. The energy hamkwred por unit mass is he shaft work pOr unid mass, O alt » mhich we can determme with Eg. HS. Thus Vpals =- UM (1) z &2 Fem the velocity triangles we otlam TÁ = Ww smto" — 7 G2 a - and = = 2 z W w, Y +U Thus Opa -U / V>+ ur snto - u) “ -- (ob) HU foot sinto 20 tt) [LL has ( +) (15%) + (zotf sinto" - 20 tt dE - » .— 330 ft Shatd = slug o” Vai * -a30 Hb 1 + -poz ft Sharf Slug (222 Ibm Hom Slug 12.5 t2s Sketch how you would arrange four 3-in.-wide by 12- in.-long thin but rigid strips of sheet metal on a hub to create a windmill fike the one shown in Videu V 124, Discuss, with the help of velocity triangles, how you would arrange each blade on the hub and how you would orient your windmill in the wind. —————» wind along votulion axis n Va jã-s 12, 6 12.6 — Sketched in Fig. P12.6 are the upstream (section (1)) and downstream [section (2)] velocity triangles at the arithmetic mean radius for fiow through an axial-flow turbomachine rotor. The axial component of velocity is 50 ft/s at sections (1) and (2). (a) Label each velocity vector appropriately. Use V for ab- solute velocity, W for relative velocity, and U for blade veloc- ity. (b) Are you dealing with a turbine or a fan? (e) Calculate the work per unit mass involved. (d) Sketch a reasonable blade section. Do you think the actual blade exit angle will need to be less or greater than 15º? Why? FIGURE Piz. (a) See figure above. (b) 7= m(ra Vaz - ri Ver) = 37 Fen ( Vaz -Vo) where Voz>0 and Vai <O (see figure above) Thus, T>0. The machine is a fan, 3) ME subi = Uo Voz - U, Ver = V(Voa - Vos) where V-Uc=l Since Va = Va = 508 » tt follows from the figure lhat : Wi Most 60 É Ls Ao U 6 = St aqu é NE W=U=U Va coeso" = 50 É or Ve 577 É Y Vea so tha! Vo, =Y. sin/5º= 518 sin 5º = 134 É and Voze Vo sim30'= 28.9 Ê Also, U=NVoiltVoa]= 42-2 É Hence, pag = 402H( 20.08 (134 6) - 760 dh - ” . a É (d) From the figure tanB= da ares Jor 0=48 * , vm Thus, the blade shape is as shown: é (m Hs 8 48 Ve 84 Was SO ft É va fm (cont) 4-6 12.8 A centrifugal water pump having an impeller diameter of 0.5 m operates at 900 rpm. The water enters the pump parallel to the pump shaft. If the exit blade angle, B,, (see Fig. 12.8) is 25º, determine the shaft power required to tum the impeller when the flow through the pump is 0.16 m?/s. The uniform blade height is 50 mm. Te TN Tite - p6 0 hi os ch ki) (£3. 10) MM Ver Do Tohare = 20 ta Voz c1) Frem Fig !2.8€ ess, ao: so ak Vip = Doo Via CoÉ pf, (2) Bor hs Zégm 2026 tia tw (roo Ba Je - 742 ad trem 60 im Dishão = (D28m (Pa 24)= 234 1 Since Mme flowrate 15 given, é follows Tuaé P= 2mk bla er Po (ont) V. 2 Lies = Zon tr” mb (2m/8.26m) (605) é Thus, from fg 2) hp: (236 2.64 Cotas) = 14,2 E and from E. (13 Tomada T (19 EE o nt o.26m) 19.2 E )= TE Nem t o, o Cree Me) (om ted hoo Pr yo (o pe Sao nt fo) ( Min Ss tew 12-49 12.9 12.9 Discuss the differences between a centrifugal pump and a positive displacement pump (see Video V12.3 for an ex- ample of a positive displacement pump impeller that loo%s like a centrifugal pump impeiler). A centrifiugal pump mmpeller pushes agamst The fores developed by à Fluid Flowing over its wellel surfaces and in So doing moves Fluid Forongh. “ A positive dispincement urap “faps "o egohures* a velume of Fluid and moves De entre volume from one bcation o another. f2-10 12.48 A centrifugal pump impeller is rotating at 1200 rpm in the direction shown in Fig. P12.10. The flow enters parallel to the axis of rotation and leaves at an angle of 30º to the radial direction. The absolute exit velocity, Vo, is 90 ft/s. (a) Draw the velocity triangle for the impeller exit flow. (b) Estimate the torque necessary to tum the impeller if the fluid density is [ 2.0 slugs/f?. What will the impeller rotation speed become if o the shaft breaks? + pet BM FIGURE P12.10 (a) The ext How velocity friangte can be Constructed Graphicallo as mditates Lelo, (1200 *% em Es & . . = fo, Fa = 6.8 E with Us 2% (0.542) (0 Ba ) 5 Bom tre veleerty Irangie = Vas Eanho Y Suco Vas Vestin ão! and Ny Th tossot di folluos Tunt “UU - MU, simdo? + Cr tar E ws3be u HE FE) sm 30? o tm” br.s GS (go SE) sm 30 = 12,9 (40 E) cos do? ( cen &) ta-t 2.12 Q=0. Fr tt%ys min. + 12.12. A centrifugal radial water pump has the dimensions shown in Fig. Pi2./Z. The volume rate of flow is 0.25 fts, and the absolute inlet velocity is directed radially outward. The angular velocity of the impeller is 960 rpm. The exit velocity as seen from a coordinate system attached to the impeller can be assimed to be tangent to the vane at its trailing edge. Calculate the power required to drive the pump. 0,75in. E FIGURE P12.12. From EG. tedt vm bzo, / 7 Wopare - QU Ver ) 7% determne Vi we use U= beto = a )(taotes Jar TE): He nm E TT chten Vop we use e exct veloity Iriangle Shown below. wu EA wo 7 ss Symee Voz= To — Vis fan 35º ; = and GL e. (orst Now dei) Junte fas A. kh amlssindlhssm) CS st follows That ; 2 (mi Lar tn) = hold Thus, from EM (1) / AE - class (o, 5 Nu 1 E) 45.188) Wma /E = toio fé or Led . tolo = o Wsmgt * moteh TO tebthro s-hp 12-14 (2.43 | Water is pumped with a centrifugal pump, and meas- urements made on the pump indicate that for a howrate of 240 gpm the required input power is 6 hp. For a pump efficiency of 62%, what is he actual head rise of the water being pumped? From Ep. (2.23 The pump efficrenes 13 qrótu by Pa efuator + ha 580 % o bhp o 7n at . CMC btp ese) ha E 0 | = Coe thp (So Es (624 fes tão Em) /Cr48 E oo bi)] = bLId (2-15 det The performance characteristics of a certain centrif- ugal pump arc determined from an experimental setup similar to that shown in Fig. 12.10, When the flowrate of a liquid (SG = 0.9) through the pump is 120 gpm, the pressure gage at (1) indicates a vacuum of 95 mm of mercury and the pressure gage at (2) indicates a pressure of 80 kPa. The diameter of the pipe at the inlet is 110 mm and at the exit it is 55 mm. TÊ zw — x = 0.5m, what is the actual head rise across the pump? Explain how you would estimate the pump motor power re- quirement. Frem Es. 1217 - Wi" (1) ha > BA + EE + 75 y Since / p . lrrospm leon é am o) u - do Eri dem o, LING 1 A = fo.Hoam)* s and ph=hh Vey om (e 797 )e)* -3 E 2 f Smam . 3 Thus, frem Eq, vn p= “Cy On) =- (0.065 Msexid 8) ana = 80x1D Man? | sou La + (D095 Mia3x 10º = os (319 89". (018) o 2 + OSmTt < (0.9)/7.80x 10º), 2 (4.81) ha = Sm To estimate the pump motor power requirement use Gg. 12.23 -Y A ha bhp (550) to get bhp -Y G ha n6so) Fw difhring values dm, a cVEsponding bhp can be caleulaho 12-46 (2.16 Né K is sometimes useful to have 4, — O pump per- formance curves expressed in the form of an equation. Fit the ha — OQ data given in Problem 12.4Sto an equation of the form ho = h, — kQ? and compare the values of A, determined from the equation with the experimentally determined values. (Hint: Plot A, versus Q2 and use the method of least squares to fit the data to the equation.) Basta en fre data from Problem 1215, tre follewmg Enable cam be ereated ano firm a Standard, linear regresssem Curve Attriç Pregram he felewns Vesalfs are oblmuned. Qlsem) | 20 | ho | bo | &o | too | io | 1% (6 Gp] “exist teu1b?] aexID”| Gex ID | doox 10? fee gi] 196410” Ace) | fes | fes | 874 | 485 | 173 [695 | SEE Abe le) |- 1.00 | 0.81 | -027| é.26 | 6:39 | 2.33 [n087 A Sha - he (experimental ) - he Cpredictea ) The equation obtamed from re ata sms linear regressa às bes PLG— 0.007 q” €1) there he 5 sm PA torta Gm gem A plot showms The Comparisom between The rxperimental dota ana tre predicteo results (Frem Eg.!) +45 shown below. fo Flowrede, O, gpm (2:14 “2,17 12.17 In Example 12.3, how will the maximum height, 2, that the pump can be located above the water surface change if (a) the water temperature is increased to 120 ºF, or (b) the fluid is changed from water to gasoline at 60 “F? (a) From Table Bl Te weter vapor pressure 5º [692 psiá and E = br MEF Thus, wa Thes Change wm Eg(2 mm tExample (2.3 & nr Co do (rm 84) ( Z So tl dell pat ma 6LN És ta p* - [htg Eine 2) use bu E, so faut (2) mau = Eus Thus, Tere 13 à decrease ww herjné Som 74H to SISFE. tb) bom Table Lt The gasolmne Vapor pressure af bo 4 So psie ana do 425 !effeS. Thus, és asove o em Es 2 dm; th (se ds) - toa Lt fes 3 té no Vu Tfão Cm E id a Fes ds so Tha (E dm TALL The negeéive sign tor E nes indecates nal under The Conditens Specificd lhe pump Could not eperade tuiThod cavitation unless if (5 located belour ne Surface level of the Gasoline. 12- 20 (2.18 12.18 A centrifugal pump with a 7-in.-diameter impeller has the performance characteristics shown in Fig. 12.12. The pump is used to pump water at 100 ºF, and the pump inlet is located 12 ft above the open water surface. When the flowrate is 200 gpm the head loss between the water surface and the pump inlet is 6 ft of water. Would you expect cavitation in the pump to be a problem? Assume standard atmospheric pressure. Explain how you arrived at your answer. Frem Ef. /2.237 Pato nesms Se -& - Ed - f “1 From Table BI Tre ader vapor pressure «É teo'F 13 OTEP3 psja pr PS; ana &= 62.00 E Thus, with Bim fe 7 ps, Zcizfe, gua ZA, = 6 Ft, EG. qrelds ra fe, Os tai) Wes LTL -nte-ttt 62.00 le FE é 4 - (o vues reu têi) b2.c0 És = 139 fé From Fig t2.12 at 200 pm =—/2 Fé VE, Fhr Preper pump operation MPsh, 2 NPSHr Since fas ds Crue mm This se, toe expect Thaé cavitatios m The permp would not be a problem. Ne. f2-21 (2.20 12.20 | The centrifugal pump shown in Fig. P12.20 is not selfrpriming. That is, if the water is drained from the pump and pipe as shown in Fig. P12.20(9), the pump will not draw the water into the pump and star! pumping when the pump is turned on. However, if the pump is primed [i.e., filled with water as in Fig. P12.20(h)), the pump does star pumping water when tumed on. Explain this behavior. ta) th) W FIGURE P12.20 The heaa-tlowrate characterstiis for a Eypiial centntuga! Pump are shown 1h Fig. de.tl. The maximum hega Juat The Pump Cam add ocenrs iihen when Qxo (ee, «é start ap for example). This heen vom terms el bre lui 1 lhe pump. Neglecêma losses and She vetecrta head Cana cavrtation etfecds) the Pump cen lift Me Fund à heght egua! to e head ander by ne pump. However, 1f e Flu m e pump Às at (ce, not pejmed) e head added 5 th terms É Ft or sm É ar, For example , ,£ hs do fd de pump could raise tuater That Hugh vÊ 16 15 primed (filed wita water) L£ fre Pump 5 not primed (filled vita ar) Then de pump can enty raise taéer up to 4 distance 6o7es te p= sofa Cb « sofa ed. 205 ft Water es Mente The water will mol qeé mt» e pump. (A-24 (12.2) Owing to fouling of the pipe wall, the friction factor for the pipe of Example 12.4 increases from 0.02 to 0.03. De- termine the new flowrate, assuming all other conditions remain the same. What is the pump efficiency at this new flowrate? Explain how a line valve could be used to vary the flowrate through the pipe of Example 12.4, Would it be better to place the valve upsircam or downstream of the pump? Why? horta f=0.03, Eq) mm Example (2% becomes rm (200 ft) - , =D + (0, to jo ft +| 0.05 CE TE) le 5415440)] vê 2(322H) (3 si V= LP = eg) 4 G)CÉr)* Egtt! tam be wrben às hp p + bon G* or tutu Po sm el /min hp= 10 + 3.00 XDÉ 7] (2) The mbtrsection el Egl2) (the system equation) ba he performance curve r Lhe pump, 45 shown below, !nilitates Tuut ne new lowrate 15 - / P= 400 de ana e efficieney aÉ ris Elo ade ts approximately 79.0. See, 100— = - qt 0746 6601200] 16002605 2400 Cont) Flowrate, galmin 12-25 tez jo (Cont) A me valve ack as a variable Írictonal resistance to the ow, Closmg fhe valve is Gu ivalent % Adelino Prietion and moving de system curve to the left mnTersechng me read cume af an apembenal point tavelvina less Plowrate than milh à more open valve sela, This system curve is shetohtd tn the figure on fhe previous Page and labeled “mare Fichon (Losi vale) * Openmp he Vale às Similar Po removing frichem qnd moving fe systêm curve fo fha vigh? 1 tersecfng he head curve af an opera fina poiot rave bra more Favrate ham with a fess ecpem valve sefing. is System carve is stethed en lhe previous page. and tabela “ess herichon Co Opersty va lve ). ” zr wonid te generally beber do place the vatee dowstre ara 2 the pero % avoid e low Suchon pressure amd ecavitation possible wilh ups ihtam placement of te vale. 12-26 (2.23 ( Cont) (E) (E)! Ke $ do (8) freh do 0.089! garxm* 0.020 f7.o po 4.178 LE5xn5] 00183 | 630 /20 0.267 2.78 x1| 00:87 | 437 dê o 0.357 371 408] o016H | Zipz 200 6d gersmnS| nois 373 ado | 0.535 | SsixW?] gor | 534 These data (Ro 15.0) are ploHed em Fig. 12.12 (reproduced below), and Jhe lowrate ab e tabersectón of The system Curve and The Pump Curve 15 - Al £= (5 a Smice at tuá Flowrate he pump eperates near peak efficrenes ais fype of pump tould «ppear fo be & Good Chore sf Me 168 9%/omo Fowrate 13 ak ov near The desired Pow rate, 500 400 [-7º : 300 TF 5 = 200 100)-4 m- . nim - : ' Li e JE8 DAR, = o 40 Bo t20 160 200 240 280 320 Capacity, galímin 12-29 /2.24 ] Determine the new fiowrate for the system described in Problem 12.23 if the pipe diameter is increased from 3 in. to 4 in. Ts this pump still a good choice? Explain. Peter to solution do Problem 12.22, lbitu D= Hz ft Eq.» becomes (ooo ft) vz 4: 4 ER 1, ? (É te) coltsza É) (2) ana vo £ q (E) (E (Ea) so ut hs = 2.45x10" £ Ig (Eh DN (3) The Pe ynolds number becomes pc $E = HO 73800 0º CL) TDV O CH de) CEA É SE) . . -+ br Commercial sjeel Sm dameber prpe (From Fis. 422), É = 43h. Thus, fer a guie Q, E Con be obtaines fm Tre Moody charl, or the Colebrook equation (Ep. 235), qnd hp determmed from Ep (3), Tabuladed Values are quên mm me follows fable . 9 E) pt) Pe £ bo Cf) | o nos | easun! | oo2H 41 | 80 eu78 | L39x/0 | cola 144 ro pu | Zogxp! | dD/83 32.6 | Ito 0.357 29240? | o.or7y 559 | 200 o su | B48NH85 | ooftb 55.3 | 2% 6.535 mz” | cola 22 | 280 ob2e | E8I4HÉ | avr (a | 3260 0.7/3 EStunÊ Botto 2zj2 These data ( É, vs 0) are plofled on Fix 212 ( reproduced on e fellowns page), and te Fewrate ué ne intersecton ef fe system Curve and The pump Cuhve 13 P= 255 ae! trun Ceont) 12-30 (2, 2% va Lam E o “o BO 120 160 200 240 280 320 Capacity, galímin Smce at dus fluwrate The pump efficiency 45 dasrts louvo (o BP) is pump is mo longer a good chore. (2-3! (2.26 (tont) Since Tre pump equation 4s do* SEo-torxh 3 600)" (t) EG (5) and Eq) can A autos bo de derme he Hwrate, Thus, 33 + 5 78X10 29? = S2.0-1.0/ xt “q? mê dna p= e0527 E (b) IF fre Flowrte x to be é m half so rat P= 00529/2 = 60265 mf, e head added 8y he por 15 532 hp S2o- poxo (vozes ) = SE bm Frem Eq.0t) torta k, un know SdtmE Bm + (k, +60 326) (D.o25 2% 23 )* So Tueé dp 2%3 From Ea. /2.290b) fne valve ioonld be [8% epen £o obtem Thiã k, 12-34 42.27 A centrifugal pump having an impeller diameter of 1 m is to be constructed so that it will supply a head rise of 200 m at a flowrate of 4.1 m?/s of water when operating at a speed of 1200 rpm. To study the characteristics of this pump, a 1/5 scale, geometrically similar model operated at the same speed is to be tested in the laboratory. Determine the required model discharge and head rise. Assume both model and pro- totype operate with the same efficiency (and therefore the same flow coefficient). For simlarts The model Pump pmusÉ eperate aí ue same Flow Wefficiemt, EF. 42.82, so Tua 2 ) (+ WD, wD3/p where The subserpt Cm) reters to June model and €p3 db he prototype. Thus - Lim Da 3 Ga “p 5) % ana desta dm, Dm /Dr= VE, and Go Flw Them Q, = (EN ai?) = avsz8 E” From EG. /2. 53 (ate) «($4s) wo p* has o £ (e) (22) +, ana deita de= dm, lbm= py Dm Dp* Ve and ha* 200m Then ? ? ? so Pub A OE lzoom) = 8.00 m /2-35 [2.28 nos Explain how Fig. 12.18 was constructed from test data. Why is this use of specific speed important? Illustrate with a specific example. A variety of pump configurations like the ones shown in Fig. 12.18 were tested over a range of flow rates. Performance data like those shown in Fig. 12.17 were acquired. For each pump configuration, the operation at maximum efficiency was noted and the specific speed, Nç, (Eq. 12. 43) was calculated for that condition of flow. These specific speed values calculated at maximum efficiency operation were then used to distribute the different pump configurations as shown in Fig. 12.18. Specific speed is important because from desired design operational data (, Q, and h, ) a specific speed value can be determined. With that value of specific speed and Fig. 12.18 the designer can decide what kind of pump configuration to use for maximum efficiency operation. For example, at lower values of specific speed, a centrifugal pump is generally best. At higher values of specific speed, an axial-flow pump may be best. In between values of specific speed may suggest that a mixed-flow pump would serve most efficiently. 12-36 /2.30 12.39 A centrifugal pump provides a flowrate of 500 gpm when operating at 1750 rpm against a 200-ft head. Determine the pump's flowrate and developed head if the pump speed is increased to 3500 rpm. br à Gwen Pump The etect of à change m speed on Q ama he 5 Gên by Egs (2.36 ana 4257. Thus, Po. 0% A o (eg. s2.36) and mia = Sbogem,t,= (7504pm, HH Ups Edo hm, Men 6,2 dee 6 “Lo, 1 = (800 q fm Symilarto, has o tor E so That tofu he, Zoo ft tu da Pa = 800 f (3506 rpm) Tizsarom) SUSPM z - 3500 pr 5 (200 ft) (750 rpm (Es. 12,37) /2-34 12,81 12.37 A centrifugal pump with a 12-in.-diameter impelter requires a power input of 60 hp when the flowrate is 3200 gpm against a 60-ft head. The impeller is changed to one with a 10- in. diameter. Determine the expected flowrate, head, and input power if the pump speed remains the same. for geometricalts similar pumps eperatim at Me same speed Tre effect od a Change 10 mpeller diameter + Givên by Fps. 42.39 t2.40, J2pl. TAKS, 3 PA. (Eg, 12.39) & 3 Ana durfa e, 3200 5pm , D p= (2) PT (lee )f3200 3pm) = (850 (250 Sfim = l2tmh., And D= fosh, From Ego 12.40 2 fa, = É (Ep. l2to) fas 2 So fnat witn ha,E to Et (AY do o (Jintao tura 2) € - Md 4 da, de ta | Smlarho From Es. (2.41 WO shege, = D” ( : Coe Es. srt h Shutt z 2 í ) ana Wita Wma = £0 Ap 7 Vgafa,* (Bu Vspuga, É - (é ja. tp )= 12.40 /2.32 Do the head-flowrate data shown in Fig. 12.12 appear 12.32. to follow the similarity laws as expressed by Egs. 12.39 and 12.402 Explain. The data m Fig faiz show tre effect of champns impeller diameter en heza-emrate charactenstas. fecordio do The smilarita lows expressed by fg (2.37 Ino Eg. (2. +o “em: 3 É & E (Eg. 12.39) Z dar = 2 (Ep. J2.t%o ) Az 2 Thus us me diameter E Imereastd from rh. do Tim to dim e Flowrate Inlreeses ac cordins bo 7 1237 45 (Leom tin term) g(Bro = Jo = 1576, and . ' = Bum. > - 2 37 q Crom tun $yh.) Ps =) Ê) É ! Sum larly, rem Ég. (240 . 2 (Leom bin. do 74%.) fe,* (E) ha, 5 (Ze) he * 1 3b ha, ana ) Cdram tm. £o $m.) am ) ha, E 1.78 ha, Thus, fer Any Fivên ait, Such às (4) tuhere Qu zo gpm qnd ha =2Zs0 fé ( see Ag. jr /jz em £o Hlowms pese) Ler Zne écin. diameter Jmpellet, de Correspondis predicted Pont tvenlá be at (RD) there GQ = (s1)ltzogpm) (9! gro Ap (136) (250 46) B%o Fé Z ( Com £) [2 44 12,3% 12.34 Ina certain application a pump is required to deliver 5000 gpm against a 300-ft head when operating at 1200 rpm. What type of pump would you recommend? Br = S000 Gp”, he = 800 Ft, and = (200hpm, the specific speed 45 My = Co Cromo) VP Gem). [Are] (1200 nom) V voo gor (300 fe)“ É“ !180 From Fig. (2.18, 44 Tys specific speed a radial Low Pump Centritagal pump) would be recommended. (2-4 (2.35 12.35 A certain axial-flow pump has a specific speeó of Ng = 5.0. If the pump is expected to deliver 3000 gpm when operating against a 15-ft head, at what speed (rpm) should the pump be run? da wo Cred) Vo CEL) hs [g() Au l66)] for MS So, / ta Ah) HP PE, ana uia 3000 fé! o > EO tus té ? (us Fes) (bo tin) S é olus ua / se Vo otra) = (50) Lens Eca | eta? = 194 E Hence do (rpm) = (144 mad ) (607) = [900 rpm JA s (2.36 A certain pump is known to have a capacity of 3 m?/s when operating at a speed of 60 rad/s against a head of 20 m. Based on the information in Fig. 12.18, would you recommend a radial-flow, mixed-flow, or axial-flow pump? vs po ELraat) Veg Co falho) de tm) ft for lo=borad/s Qu Smmls, G= G8lmisi qua hs 2om 2 (toras ) S mts Egor) om] = 198 Ms Bem Ely lulg corta Mp= 18 The pump 15 a imired-Alew Pump. /2- &6 12:37 (cont) Pe main Cauton m Placing te Pump vertreally m the rituke pipe is % do so m a way de avoid cavitatiom lin The pump. The collapse of cavitabom bubbles o tne pump cam eredo pump blade and olher metie! surtaces. Apply he energy equafim, Ba.5.8€, between The Set suríce (1) ama the pump enhance (2) We ge? 2 z Biba Bem ye-h + 2 t+ 29 4h 29 and + Maximize f , we minimo 2,2, Po ochreve fuis we Place pe puma high verticall, ma he miíxte pipe. This will tend to lego Pá high enmagh % aviid cavitatica which oceurs mhen p andfw velaleo pressares dh tha pump become less than the vapor pressure of the Fluid. 12-49 12:41 A Pelton wheel turbine is illustrated in Fig. P12.41. The radius to the line of action of the tangential reaction force on each vane is 1 ft. Each vane deflects fluid by an angle of 135º as indicated. Assume all of the flow occurs in a horizontal plane. Each of the four jets shown strikes a vane with a velocity of 100 ft/s and a stream diameter of [ in. The magnitude of velocity of the jet remains constant along the vane surface. (a) How much torque is required to hold the wheel stationary? (b) How fast will the wheel] rotate if shaft torque is negligible and what practical situation is simulated by this condition? M FIGURE P+2.4) T=nmra(U-VMlI-cosp) where n=% ta) With the wheel stationary V=0 so that T=-&m im Vi ll-cosf) where m = AV= (ay sas) (HP (100 £) = sos ska Thus, T=-4 (1057 8) (1 44) (100 HE) (I- cos 135º) (9) = - 722 f!lb (b) From Eg.(1), when T=0, then Uh Thvs , vo? Door oM or coro Mio 00088 =955 rem The zero torque case represent a broken shaft situation. ta 50 12.42 12.42 Consider the Pelton wheel turbine illustrated in Figs. 12.24, 12.25, 12.26, and 12.27. This kind of turbine is used to drive the oscillating sprinkler shown in Video V 12.4. Explain how this kind of sprinkler is started, and subsequent]y operated at constant oscillating speed. What is the physical significance of the zero torque condition with the Pelton wheel rotatíing? As shown on page 775 below Eg. 12.50 pato = mr. Cu-vuy- cos p ) So rw no rotafon ot the wheel or UzO, fre variafim of Tuts tuto, changing m d near. When Laet ss Just lavçer than Me resisting Yerque provieled by the sprinkler, the Peltor wheel rotates and drives He oserllatrom ot the sprinkler. Aflw wbgel rotatim and sprinkier oscillafion begins, am Comstam value of m and Toa a results o A content valee of UT and thus rolnben speed amd alto oscillabor period . JF the shaft cmnechas e oscillabing sprinkdo to Ffhe Rttm wiee) breaks during optratim , the sprinkler ml) cease oscilla bn; and the Ritm wheel wilt rum af constan? rotatiom speed comrespondras to UV=y. t2-57 12.45 12.45 A sketch of the arithmetic mean radius blade sections of an axial-flow water turbine stage is shown in Fig. PIZHS. The rotor speed is 1500 rpm. (a) Sketch and label velocity tri- angles for the fiow entering and leaving the rotor row. Use V for absolute velocity, W for relative velocity, and U for blade ve- locity. Assume flow enters and leaves each blade row at the blade angles shown. (b) Calculate the work per unit mass delivered at the shaft. (a) U=ruw and s that wah ra “ st, D=tw where w=(1500 5a gos Blade secticns 1 U | atthe arithmetic mean radius Pas AV Nas EB FIGURE P12.45 Lin ( 27 rad cad (2 Emo) = 157 9º - (0.5 H157 188 Lady. 78. st e a intet and exit velocity triangles 2º Va are as shown. v/ [U=785 U, =78.5 Mote: U =U, (same radivs) d . PÊ W=Ula (trom continvily egr.) 7) uso nº (ma HT U Voa -U Voy =U(Voz- Vos) tm) From the figures? Vi cos 70º =W, cos 45º and from law of Sines W 78.5 or W=635 E smar S (e3.8 8) costsº sin (zó=as") so that ,= "5 — = (313 É cos 70º or g Vo = cos20' = 123 E Also, Voozh-W sints" = 78.5 É - ess É sintrs"= 33.6 É Hence, from Eq. (1) Mepatt * = 79.5 H[ 3248 12388] = 702084 /2- 5% 12.86 1246 An inward flow radial turbine (see Fig. P12.46) in- volves a nozzle angle, &, of 60º and an inlet rotor tip speed, U, of 9 m/s. The ratio of rotor inlet to outlet diameters is 2.0. The radial component of velocity remains constant at 6 m/s through the rotor and the flow leaving the rotor at section (2) is without angular momentum. (a) If the flowing fluid is water and the stagnation pressure drop across the rotor is 110 kPa, determine the loss of available energy across the rotor and the efficiency involved. (b) If the flowing fluid is air and the static pressure drop across the rotor is 0.07 kPa, determine the loss of available energy across the rotor and the rotor efficiency. M FIGURE P12.46 (a) loss = Porcfm EM att o where Por foz = stagnation pressure 4 drop across reter =Ag, an Mshafi = UV, Voz Ui Vos =-U Voy since Voz =0 o m = Thus, Mega * A92)(12Blc0s30) =-93,5 55 Vez Voe so that 3 toxio f mA m* loss= É 4 (93.50) = /6.6ã a, Also, . mM = Meat Pas içã Y ap: — QuoxZ) = 0.849 (999 3) Cont) 12-65 12-46 (cont) (b) loss = fede Mlpall “ where for” foz. = stagnalian pressure drop across rotor = af and Mepaty = Voos -U Vos =- UV sinco Vea =0 Thos, Me pag = (EN 12 Ecos 30º) =- qu, LE V=12 Also, ON 28 = fra tipo) Ver = cosa = 0.07 ka + (123 BO 02 2 (685) ( Là =(0.07 +0.066%) kPa = 0.138%kP Wn=6 Thus, 3y loss = SittSO mê gas. 17.4 E (123 da) and Meta past 0.843 ve (egg ES 123 +9 ms, Ja- 56 12.50 12.59 A Peiton wheel has a diameter of 2 m and develops 500 kW when rotating 180 rpm. What is the average force of the water against the blades? If the turbine is operating at max- imum efficiency, determine the speed of the water jet from the nozzle and the mass flowrate, Wopatl E To = 2Fwor 5ooxid Mm =(Zm)F(igo Ler)( Amin) (20 rad) cos rev Thus, F=26,600N Also, Wopaty = POUCU-VDlI-cosg) so thal a! maximum efliciency with ê: =/80º and V=5 Ve Ihis gives Wpaty = REC (2) = eU eu. ny , But W=20=202 =wD= (1805 (giz) 2zraa oe) (am) = 37.6 & Thos, from Eg tt): o ZW - 2(500n0 12) m tg vê (37.6 E) = 707 Ms =707 2 12-59 2.51 12.51 Water for a Pelton wheel turbine flows from the head- water and through the penstock as shown im Fig. PI25/. The effective friction factor for the penstock, control valves,and the like is 0,032 and the diameter of the jet is 0.20 m. Determine the maximum power.output. Elevation = 975 m o) VA ) “4 | Eleaion=250m 0.20m E FIGURE Pt2.51 Wopaty = pRU(v-V)(I-cosg) or for maximum power B=/80º, V= Thus, vê What 2" e Z ti) max a But Beshesz = Golo en tr, here for po0, 2ee975m, Z,=250m , and Vh=0 Zo =Z, +b bte where AV=AV mn Pu = POW. Thatis V= (LV, «(EDU =0.0494V, so thal £g. (2) becomes: 2 975 m = 250m + zaml! +o,032( Die) o. 0498)? | where Va 2 or V=i/43 E Hence, Q= AV =Hoazmtuas2)= as E Therefore, from Eq: Hence, or s t mz Wohart = os bes set ) (itta) =222x0º 2 «23,200 kW max = 12-60 12.52 12.52 Waterto run a Pelton wheel is supplied by a penstock of length € and diameter D with a friction factor f. If the only losses associated with the flow in the penstock are due to pipe friction, shown that the maximum power output of the tur- bine occurs when the nozzle diameter, D,, is given by D, = D/(re/D. Wopati = egu( V-v) (- cosg) so the maximum power ovipul occurs wilh p= 180º and vb - Thvs, y to) Wepatl = PO adere «1) , 2 Db 4 t But po=f1=0, o=0, and Po gch. Thvs, z Z hab Ê ubere since ALA or OM = Z0% ue have n=(B)V Vê emo Therefore, h= all? tá 2 "25 3 —Lrtdà - LEOMh py qo —SBÊ Wlopa = LRP - —Nagh dO HED) O (ED 1d (140, D5)£ (a (3 For this problem £. 2, Dand h are constanis ; O, is variable. Thus, from Egs.(2) and (3): Winafy = Kd where K=const. and c<consl.= f Ê (irc Diã Note: Wopai —0 as D->0 and às D,-»00, To find the D, ihal gives and Eq. €1) gives maximum power over all, sel dWehaty = P! 4 e 0 dVopatt 2KDy CEJKDZ 3 DO trens! Qrrenyrjra (040 =O 2kDr “ trcoa [1-2 ]=0 =0,0r 14cbf=scD,*, er Dt=zE D Thus, Ds cine “qb 12-61 12. 55 12.55 A hydraulic turbine operating at 180 rpm with a head of 170 feet develops 20,000 horsepower. Estimate the power and speed if the turbine were to operate under a head of 300 ft. 4, =/80rpm , hy = 70H, Wpatt, * 22000hp ma=P ma = 00H, Mpatg*? Assume He efficiency remains constant 2h.) = 2h so with D,=Da and q 92º “oa 170 300 (180% * Tua O ua = 239 rpm W W Assume Mhe same powercoetlicient: quédé. ao ué) so with D =D. and p=fe: 2ovoo baga qr Vl" PÓU0O O 12.56 12.56 Draft tubes as shown in Fig. P1256 are often in- stalled at the exit of Kaplan and Francis turbines. Explain why such draft tubes are advantageous. «) Draft tube ZA) GA Le ops E FIGURE P12.55 Wilhovt the draft tube there would be a relatively high speed ext jet (speed V,, pressure p,=0). With the drafl Jube (which act as a ditfuser) the exit speed is much smaller (WxO , qo =0). From Gernoull" equation if Tolhows Mal f,<O Cwilh he drati tube). Hence there is a Jorger head available to lhe lurbine. More energy can be removed from the Llid, /2- 6+ 12:57 12.57 Turbinesareto be designed to develop 30,000 horse- power while operating under a head of 70 ft and an angular velocity of 60 rpm. What type of turbines is best suited for this purpose? Estimate the flowrate needed. Wpati = 30000 hp 5 hy = 70; and w=60rpm so thai Na = ria = dE =543 Fortis valve a Francis , turbine wovld be appropiats. Also, since Was = SQhr it follows that ; lb q= “etutt - (32,000 tl sso 2/47 ” E hr (62.4 Bs 70) SfEs 12-65 12.88 12.58 Show how you would estimate the relationship be- tween feature size and power production for a wind turbine like he one shown in Video VIZI. %o estimate the vela ion shop belmeer feature size and pover pro dnchom fr à wind turbine we use the dimensimaless ; £ pi terms 0É djs. 12.27 amd 12:30 which ave applicable fr this jneompressible Flow. For similar durbines And epecát ” tendihons Momutro o Womto a pusD” 2 nº fa d, pmd Ghas o 9 ha Do CC wrDA ? t % > Since PEA amd has = ha, we tombive and get A 2 att ' - Db, ) = Won > 2, dr quer Varies with Lenture Size squaned, 12-66 72-87] 12.6 — The device shown in Fig. P12. 6 is used to investi- gate the power produced by a Pelton wheel turbine. Water sup- plied at a constant flowrate issues from a nozzle and strikes the turbine buckets as indicated. The angular velocity, w, of the turbine wheel is varied by adjusting the tension on the Prony brake spring, thereby varying the torque, T.pans applied to the output shaft. This torque can be determined from the measured force, R, needed to keep the brake arm stationary as Tomar = Peltóh, Ft, where € is the moment arm of the brake force. wheel Experimentally determined values of « and R are shown in the following table. Use these results to plot a graph of torque as a function of the angular velocity. On another graph plot the power output, Wan = Tonan, “2, AS à function of the angular velocity. On each of these graphs plot the theoretical curves for this turbine, assuming 100 percent efficiency. Compare the experimental and theoretical results and dis- cuss some possible reasons for any differences between them. Brake shoe H FIGURE P12.64 « (rpm) R (b) 0 247 360 1.91 450 1.84 600 1,69 700 1.55 940 1.17 1120 0.89 1480 0.16 (a) Experimental : T=Re=(o.5HR or T=0sR fl, where R=-h a) and W, Mot = TU = Tu m 69) (eELad ” Wpaty = 01047 Tu Eb — uhere T=FtHb , core (2) Vales of w,T, and Wjsy are given in the fable and graph below, (b) Thewrefical: T=mr(U-V)I-cosg) where assume E =/80º, Es V = 2-ê = USE ss savÊ, and 7 (en m =09=(19% do (assa) = 0,105 slas Henco, with U=tw 2 = (Rtt)( PU Lad) = 9, ozs2w É w-rpm T=(o.r105 sleep 2sDfo 0242) -53.7] É 7=/.4 [Éeexô'w -1] Ftlh , where to = rpm (3) (con't) or /2-69 12,6% À (con't) fls, Way = Tu = T($80) =0.to7Tw Eb where Te Bel, tu ep Valves of Tand Wpatt from Egs.(3)and (4) are plobed in lhe gragh below, ; H experimen eory o 1.235 0 14 Õ 360 0.955 36.0 1i6 43,8 450 0.920 43,3 1.100 51.8 600 0.845 53.1 2497 62.6 700 0.775 56.8 0,928 68.0 q40 0.585 57.6 0.763 75.1 t!z0 0.45 52.2 0.639 785.0 1480 0.080 12.& 0,392 60.7 Ló - “+80 La Wohaft , te Erlh ta E Je Lo 0.8 Ju 0.6 o zo 0.2 0 /2- 70 APPENDIX A Listing of Standard Programs LINREG2.BAS 5 cls 10 print Stsoeaoeolotoiatetad ek sede dede de 20 print "xx This program determines the least squares fit ** 30 print "** for a function of the form y=a+b*x ento 80 print MSM dd 50 dim x(101),y(101),ybar(101) 55 print 60 input “Number of points: “,n 70 print “Input X, Y! 80 for i=1 to n 90 input x(i),yti) 100 next i 101 sx=0 102 sy=0 110 sxy=0 120 sxsq=0 130 for 2=1 to n 131 sx=sxtx(i) 132 sy=syty(i) 140 sxy=sxytx(1)*y(i) 150 sxsq=sxsqtx(1)"2 160 next i 161 a=(sxsqtsy-sxy*sx)/(ntsxsq-sx"2) 170 b=(ntsxy-sx*sy)/(ntsxsq-sx"2) 180 print 190 print using "a 200 print using "b 210 print 220 print “ x Y Y(predicted)" 230 for i=1 to n 240 ybar(i)=a+btx(i) 250 print using "ABLAERDOSOO MRETOSTO AR RAC OO CGC D pi) ybarti) 260 next à 4-4 100 110 120 130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 POLREG.BASº cls print 'Pedeeoeaaee aa ad esa ea aa a atoa dd aaa print "** This program determines the least squares fit xx! print "xx for any order polynomial of the form: a print "xx y = dO + di*x + d2*x'2 + d3*X03 +... + print esses ae ato aaa ta dO Rd df print dim b(21),d(21),5(21),x(101),y(101),f(101) dim errf(101),p5j(101),pim1(101),ybar(101) input "Enter number of terms in the polynomial: ",nterms input “Enter number of data points: ",npoint print:print "Enter data points (X , Y)" for i=1 to npoint input x(i),y(i) d(i)=0 E(ti)=y(i) next i print print "The coefficients of the polynomial are:" for i=1 to npoint f(i)=f(i)-dinterms+1)*x(i)"(nterms ) next i for 5=1 to nterms b(5 d(3 s(5)=0 next 3 c(1)=0 for 1 to npoint d(1)=d(1)+f(i) b(1 (1)+x(i) s(1)=s(1)+1 next i d(1)=d(1)/s(1) for i=1 to npoint errf(i)=f(i)-d(1) next i if nterms=i then goto 750 b(1)=b(1)/s(1) (cont) As ( cont ) POLREG.BASº 500 for i=1 to npoint 510 pômiti)=1 520 pjti)=x(i)-b(1) 530 next à 540 for j=2 to nterms 550 for i=1 to npoint 560 p=pi(i) 570 d(j)=d(j)+errf(i)*p 580 p=p*pi(i) 590 b(5j=btj)+x(i)*p 600 s(jj=s(j)+p 610 next i 620 dtj)=d(5)/st5) 630 for i=1 to npoint 640 errf(i)=errf(i)-d(j)*p(i) - 650 next i 660 if jsnterms then goto 750 670 b(5)=b(5)/st5) 680 cljl=s(5)/st3-1) 690 for i=1 to npoint 700 p=pjti) 710 piti)=(x(i)-b(5))*páli)-cls)*psmiti) 720 pimiti)=p 730 next à 740 next 5 750 print using "dk = +&.4HHH"""c";nterms-L, dinterms) 760 nterms=nterms-1 770 if nterms>0 then goto 300 780 print 790 print * x Y Y(predicted)" 800 for i=1 to npoint 810 print using "th. HWRRTCOS ap MPRRTTOO ABERRRO OO M xi) yli),yli)-errf(i) 820 next i “This program is based on an algorithm described in Conte, S.D. and de Boor, C., Elementary Numerical Analysis: An Algorithmic Approach, 3rd Ed., MeGraw- Bill, New York, 1981, p. 259. COLEBROO.BAS 100 cls 110 print 'Setseesso essas aeee se aaa aaa adota toe ta o dd tt 120 print '** This program determines the friction factor, £, for *** 130 print '*x pipe flow for the case of laminar or turbulent flow *X" 140 print "*x (solving iteratively Colebrook's equation), given om 150 print "xx the Reynolds number and the relative roughness of *xm 160 print "xx the pipe em 170 print 'Seseeesecese esse eea see a aa tata 180 print 190 input "Enter Reynolds number, Re = ",re 200 f=64/re 210 if re < 2100 then goto 260 220 input "Enter relative roughness, rr = ",rr 230 fp=f 240 £=1/(-2.0*log(rr/3.7+2.51/(re*fp”.5))/l0g(10))*2 250 if abs(1-f/fp)>0.001 then goto 230 260 print 270 print using "The friction factor is £ = +H.&HHEHTTTTULE CUBIC.BAS 100 cls 110 Print ALAS ES 120 print "** This program determines the real roots of a aee 130 print "** cubic equation of the form x'3 + atx'2 + btx + c = 0 **" 140 print EA RR RR RR RR RR RR RR O e e e e a 150 print 160 input " a=",a 170 input " b=",b 180 input " c=",e 190 ! 200 'Check if the equation has complex roots 210 p=(3*b-a”2)/3 220 q=(2%*a“3-9%aXb+27%0)/27 230 if q"2/4+p"3/27<=0 then goto 250 240 print:print "The equation has complex roots":stop 250 x0=-a/3+2/3*(a”2-3*b)"0.5 260 for i=1 to 20 270 x1=(2*x0"3+atx0"2-c)/(3*x072+2%a*x0+b) 280 if abs(x1/x0-1)<0.0001 then goto 310 290 x0=x1 300 next à 310 m=atx1 320 n=bratxl+x1"2 330 -m+(mº2-4*n)º.5)/2 340 x3=(-m-(mº2-4*n)7.5)/2 350 print 360 print "The roots of the cubic equation are:" 370 print using "xl=H.HftOTOO o x2=+BRRRROOOO x3=+H.RREROOO O" ;x1,x2,x3 4-7 FAN.RAY.BAS 1) 100 CLS 110 PRINT *Seteeee ease ses esa eee ae doa de ade 120 PRINT "** This program computes the one-dimensional Fanno or x! 130 PRINT "** Rayleigh flow functions for a gas with constant ee 140 PRINT "** specific heat and molecular weight. (NOTE: k > 1) e 150 PRINT '"eeeseaso ease eaeaa aos tea ea dd df 160 ! 170 ' Fanno flow functions 180 DEF FNFTTSTAR (K, MA) = (K + 1%) / (28 + (K - 1%) * MA * 2) 190 DEF FNEVVSTAR (K, MA) = SQR(FNFTTISTAR(K, MA) * MA ” 2) 200 DEF FNFPPSTAR (K, MA) = SQR(FNFTISTAR(K, MA)) / MA 210 DEF FNFPOPOSTAR (K, MA) = (14 / FNFTISTAR(K, MA)) ” ((K + 14) / (24 * (K - $))) 7 MA 220 DEF FNFLD (K, MA) = (18 - MA” 2) / (K X* MA * 2) + (K + 14) * LOG(FNFVVSTAR( K, MA)” 2) / (26 * K) 230 ! 240 ' Rayleigh flow functions 250 DEF FNRIMP (K, MA) = 1 + (K - 18) * MA * 2 / 2% 260 DEF FNRPPA (K, MA) = (1 + K) / (1 + K * MA * 2) 270 DEF FNRITA (K, MA) = (FNRPPA(K, MA) * MA) * 2 280 DEF FNRVVA (K, MA) = FNRPPA(K, MA) * MA ” 2 290 DEF FNRTOTOA (K, MA) = 24 * FNRPPA(K, MA) * 2 * MA” 2 * FNRIMP(K, MA) / (K + 18) 300 DEF FNRPOPOA (K, MA) = FNRPPA(K, MA) * (2% * FNRTMP(K, MA) / (K + 14)) * (K 7 4R — 18)) 310 ! 320 ! Get functions desired 330 LOCATE 8: PRINT "Program options" 340 LOCATE 9: PRINT " (1) Fanno flow calculations" 350 LOCATE 10: PRINT " (2) Rayleigh flow calculations" 360 LOCATE 11: INPUT "Enter the number of the option desired: ", OPT 370 IF (OPT <> 1) AND (OPT <> 2) THEN LOCATE 11: PRINT SPACE$(79): GOTO 360 380 ! 390 '--- Display banner specifing which flow calculation is being performed 400 CLS 410 IF OPT = 2 GOTO 480 420 PRINT 'Seteeo eee aaa ee tao a et ooo tod dota ta dot foto dao oo tod e tdo tod dotada 430 PRINT "x* Computing the one-dimensional Fanno flow functions *x! 440 PRINT "*x for a gas with constant specific heat and molecular **! 450 PRINT "xx weight. (NOTE: k > 1) e 460 PRINT 'Sesesoesee desse ease tao a at ato e ota eta aaa toaa ar 470 GOTO 540 480 PRINT '“etetseeoese eee eae o ot aa ta tada ta dt e ted att at 490 PRINT "** Computing the one-dimensional Rayleigh flow functions **" 500 PRINT "xx for a gas with constant specific heat and molecular Mex 510 PRINT "** weight. (NOTE: k > 1) x 520 PRINT 'Setoeo ease dede aee tee o toa eae to od to od atado pol top eta ae 530 ! 540 '--- Get the user specified specific heat ratio SS0 LOCATE 7: INPUT "Enter the specific heat ratio, (k > 1): ", K 1 (cont ) Á-io (cont ) FAN RAY.BAS 560 IF K <= 1 THEN GOTO 550 570 LOCATE 7: PRINT SPACE$(79): LOCATE 7 580 PRINT USING “The specific heat ratio is k=kf.H44; K 590 |! 600 * Get Mach number to solve for 610 FOR I = 8 TO 16: PRINT SPACÉ$(79): NEXT 1 620 LOCATE 16: PRINT SPACE$(79): LOCATE 16 630 INPUT "Enter a Mach number to solve for (999 to quit): “, MA 640 IF MA = 999 THEN END 650 IF MA > O AND OPT = 2 THEN GOTO 710 660 IF MA > O AND OPT = 1 THEN GOTO 830 670 LOCATE 9: FOR I = 1 TO 6: PRINT SPACES(79): NEXT I: LOCATE 14 680 PRINT “Valid Mach number range: Ma > O! 690 GOTO 620 700 ! 710 '* Solve Rayleigh flow functions for specified k and Ma 720 LOCATE 9: FOR I = 1 TO 6: PRINT SPACE$(79): NEXT I: LOCATE 9 730 PRINT USING " Ma EMBROC OCL MA 740 PRINT USING " P/Pa «BERRO SOOU FNRPPA(K, MA) 750 PRINT USING " T/Ta BERACOCC; PNRTTA(K, MA) 760 PRINT USING " v/va 770 PRINT USING "To/Toa 780 PRINT USING "Po/Poa 790 ! 800 ' Loop back for another Mach number 810 GOTO 620 820 ! 830 ! Solve Fanno flow functions for specified k and Ma 840 LOCATE 9: FOR I = 1 TO 6: PRINT SPACE$(79): NEXT I: LOCATE 9 ARRROOSCU, FNRVVA(K, MA) R$HECS CC, PNRIOTOA(K, MA) «MERECCCCE, ENRPOPOA(K, MA) MU! HE dh ap NE st ae 850 PRINT USING “ Ma = &fETTOO; MA 860 PRINT VE(LA-1)/D = 4; B65 PRINT USING "kh. &44Hº2"c"; ENFLD(K, MA) 870 PRINT " T/TX = tt; 875 PRINT USING FNFTITSTAR(K, MA) 880 PRINT 885 PRINT USING "p.&HHH"2"C"; PNEVUSTAR(K, MA) 890 PRINT " P/PX = H; 895 PRINT USING "k.gAHATTOCE; PNFPPSTAR(K, MA) 900 PRINT " Po/Po,* =; 905 PRINT USING "g.44H40"""!; PNFPOPOSTAR(K, MA) 910 PRINT 920 ! 930 ! Loop back for another Mach number 940 GOTO 620 Ai
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved