Medição de Vazão - SENAI - MG

Medição de Vazão - SENAI - MG

(Parte 6 de 8)

De acordo com a equação 1, levando-se em consideração que a densidade de fluxo magnético B é constante, temos que a fem é proporcional à velocidade.

Para a vazão temos a seguinte fórmula:

Medição de Vazão

Q=S.V(2)
onde:Q: vazão
S: área da secção transversal do tubo (m)
V: velocidade média do fluido (m/s)
S= pi.d2(3)
4
E=B.d.V(4)

Fazendo uso das equações (1) e (2), podemos determinar que a fem induzida é proporcional à vazão.

4.B.d
4.B

Q= pi.d. E (5)

Na equação 5, se B constante, então Q será proporcional a E, pois pi.d2/4B torna-se constante. Em outras palavras, a fem induzida E, se conhecida, irá representar a vazão Q.

- Estrutura do Detetor: Revestimento

necessário que o interior do tubo seja isolado eletricamenteSe isto não for feito a

Para se conseguir retirar um sinal elétrico proporcional à vazão , é fem será curto-circuitada e dessa forma , não estará presente nos eletrodos . Se o tubo fosse de material isolante não haveria problema , mas , geralmente o tubo é feito de material condutor . Para evitar que a fem seja curto-circuitada pela parede condutiva do tubo , um isolante tal como teflon , borracha de poliuretano ou cerâmica . A escolha do material isolante é feita em função do tipo de fluido.

- Eletrodo

Eletrodos são dois condutores instalados na parede do tubo , para receber a tensão induzida no fluido . Existem vários materiais de fabricação tais como : aço inox , monel , hastelloy , platina e outros que dependem do tipo de fluido a ser medido .

Medição de Vazão

- Tubo detetor

O material de fabricação do tubo do medidor não pode ser de substâncias ferromagnéticas, tais como aço ou níquel, pois as mesmas causam distúrbios no campo eletromagnético, desta forma é geralmente usado para fabricação do detetor. Na prática o aço inox é o mais usado.

- Influência da condutividade

A influência da condutividade nos medidores de vazão deve ser entendida como se específica a seguir. Considera-se o elemento primário como um gerador simples desenvolvendo uma fem e, conectado em série com a resistência interna do fluido Rf. A fem deste gerador é recebida pelo elemento secundário, que tem uma resistência Rs. A resistência Rf do fluido entre os eletrodos é dada aproximadamente pela seguinte fórmula:

Rf = 1
E.de

onde E é a condutividade do fluido em siemens/ metro (S/m) (=mho/m) e de é o diâmetro dos eletrodos. Desta forma, a relação da tensão de saída à tensão gerada é:

es = 1 - ___1___
e (1+Rs.E.de)

Exemplificando: Se a impedância Rs, é de 1 MΩ o fluido água com condutividade de 0,01 S/m e o diâmetro de eletrodo de 0,01m, temos:

es = 1- _____1_______ = 1 - _1_ = 0,9
e ( 1+ 106 . 10-2 . 10-2 ) 1+100

ou seja, 9%. Se a condutividade do fluido fosse aumentada de um fator 10, a relação acima passaria a 9,9%, ou seja: um aumento de 100% na condutividade só provocaria uma mudança inferior a 1% na relação. Todavia, se a condutividade tivesse diminuído 10 vezes, a relação es/e teria passado a 90% ou seja, 10% de variação.

Observamos, então, que, a partir de um certo limite de condutividade, que depende de determinadas combinações entre o elemento

Medição de Vazão primário e o secundário, não há problema de influência de condutividade do fluido sobre a precisão da medição, desde que seja superior aos limites recomendados.

Instalação elétrica

- Alimentação das bobinas

A grande transformação sofrida pelos medidores eletromagnéticos de vazão, nos últimos anos, foi com relação à forma de excitação das bobinas. Os quatro tipos principais de excitação são: corrente contínua, corrente alternada , corrente pulsante e freqüência dupla simultânea.

Vamos fazer um comparação técnica entre os quatro tipos citados, ressaltando suas vantagens e desvantagens.

- Formas de Excitação

- Excitação em corrente contínua A excitação em corrente contínua tem a vantagem de permitir uma rápida detecção da variação de velocidade do fluido, e só é aplicada para casos muitos especiais, como por exemplo, metais líquido. Entre as desvantagens deste método, citamos: dificuldade de amplificação do sinal obtido, influência do potencial eletroquímico, fenômeno de eletrólise entre os eletrodos e outros ruídos.

- Excitação em corrente alternada

Medição de Vazão

A excitação CA tem as vantagens de não ser afetada pelo potencial eletroquímico, ser imune à eletrólise, ainda é de fácil amplificação. Por outro lado, temos as desvantagens de vários ruídos surgirem em função da corrente alternada, que são provocados pela indução eletromagnética, chamado de ruído de quadratura, pela corrente de Foucault que provoca o desvio de zero e pelos ruídos de rede que somam-se ao sinal de vazão, e muitas vezes são difíceis de serem eliminados.

- Excitação em corrente contínua pulsada A excitação em C pulsada ou em onda quadrada, combina as vantagens dos métodos anteriores e não tem as desvantagens. Não é afetada pelo potencial eletroquímico, pois o campo magnético inverte o sentido periodicamente, mas como durante a medição o campo é constante, não teremos problemas com correntes de Foucault nem com indução eletromagnética que são fenômenos que ocorrem somente quando o campo magnético varia. O ruído da rede é eliminado sincronizando o sinal de amostragem com a freqüência da rede e utilizando-se uma freqüência que seja um submúltiplo par da freqüência da rede, e finalmente a amplificação torna-se simples com amplificadores diferenciais.

- Excitação com freqüência dupla simultânea A corrente de excitação de dupla freqüência é aplicada ao tubo de medição, o qual gera um sinal de vazão com a mesma forma de onda. Se um sinal de vazão em degrau é aplicada ao tubo de medição, o sinal de vazão é amostrado e filtrado nos seus componentes de baixa e alta freqüência. A seguir essas componentes são somadas reproduzindo o degrau aplicado .

Desse modo a componente de alta freqüência responde principalmente às variações rápidas, enquanto que a componente de baixa freqüência responde principalmente às variações lentas.

- Aterramento

Por razões de segurança do pessoal e para obter uma medição de vazão satisfatória, é muito importante atender todos os requerimentos dos fabricantes quanto ao aterramento. Uma interligação elétrica permanente entre o fluido, o medidor, a tubulação adjacente e um ponto de terra comum é especialmente importante quando a condutividade do líquido é baixa.

A forma de efetuar o aterramento depende do tipo de medidor (revestimento interno, etc.). Quando o medidor é instalado entre tubulações nãometálicas ou revestidas internamente, é normal instalar anéis metálicos entre os

Medição de Vazão flanges do medidor e a tubulação. Assim é obtido o contato elétrico com o fluido para posterior aterramento. Estes anéis devem ser de diâmetro interno igual ao medidor e de diâmetro externo menor que a circunferência de furos dos flanges do medidor

- Escolha do diâmetro

Os medidores magnéticos industriais apresentam um melhor desempenho relativo à precisão, quando a vazão medida corresponde a uma velocidade apreciável. Devem ser levadas em conta considerações relativas ao compromisso entre a decantação/incrustação e abrasão. Tipicamente, eles têm uma precisão de 1% da escala quando a velocidade que corresponde ao fim da escala de vazão, é superior a 1m/s e 2% quando compreendido entre 0,3 e 1m/s (os valores numéricos citados variam dependendo do fabricante). Os fabricantes apresentam ábacos de escolha para seus medidores onde, conhecendo a velocidade ou a vazão máxima a medir, pode ser determinado o diâmetro do medidor magnético para efetuar a medição.

2.4.2 - Medidor Tipo Turbina

O medidor é constituído basicamente por um rotor montado axialmente na tubulação . O rotor é provido de aletas que o fazem girar quando passa um fluido na tubulação do processo . Uma bobina captadora com um imã permanente é montada externamente fora da trajetória do fluido . Quando este se movimenta através do tubo , o rotor gira a uma velocidade determinada pela velocidade do fluido e pelo ângulo das lâminas do rotor . Á medida que cada lâmina passa diante da bobina e do imã , ocorre uma variação da relutância do circuito magnético e no fluxo magnético total a que está submetida a bobina . Verifica-se então a indução de um ciclo de tensão alternada . A freqüência dos pulsos gerados desta maneira é proporcional á velocidade do fluido e a Vazão pode ser determinada pela medição/totalização de pulsos .

Medição de Vazão

- Influência da viscosidade

Como visto acima a freqüência de saída do sensor é proporcional à vazão , de forma que é possível , para cada turbina , fazer o levantamento do coeficiente de vazão K , que é o parâmetro de calibração da turbina , expresso em ciclos(pulsos) por unidade de volume . Numa turbina ideal este valor K seria uma constante independente da viscosidade do fluido medido . Observa-se , entretanto , que à medida que a viscosidade aumenta , o fator K deixa de ser uma constante e passa a ser uma função da viscosidade e da freqüência de saída da turbina . Abaixo de 2 cSt de viscosidade , o coeficiente K é aproximadamente constante para freqüências de saída acima de 50 Hz . - Performance

Cada turbina sofre uma calibração na fábrica , usando água como fluido . Os dados obtidos são documentados e fornecidos junto com a turbina . Usando estes dados obtêm-se o fator médio de calibração K relativo à faixa de vazão específica . O fator é representado pela seguinte expressão:

K = 60.f

Medição de Vazão

OBS.: Relutância: é a dificuldade que um material magnético oferece as linhas magnéticas, o contrário é permeância.

2.4.3 - Medidor por Efeito Coriolis

É um instrumento de grande sucesso no momento, pois tem grande aplicabilidade desde indústria alimentícia, farmacêutica, química, papel, petróleo etc. e sua medição, independe das variáveis de processo - densidade, viscosidade, condutibilidade, pressão, temperatura, perfil do fluído.

Resumidamente, um medidor Coriolis possui dois componentes: tubos de sensores de medição e transmissor. Os tubos de medição são submetidos a uma oscilação e ficam vibrando na sua própria freqüência natural à baixa amplitude, quase imperceptível a olho nu. Quando um fluído qualquer é introduzido no tubo em vibração, o efeito do Coriolis se manifesta causando uma deformação, isto é, uma torção, que é captada por meio de sensores magnéticos que geram uma tensão em formato de ondas senoidais.

(Parte 6 de 8)

Comentários