(Parte 2 de 5)

Tochas de soldagem e acessórios

A tocha guia o arame e o gás de proteção para a região de soldagem. Ela também leva a energia de soldagem até o arame. Tipos diferentes de tocha foram desenvolvidos para proporcionar o desempenho máximo na soldagem para diferentes tipos de aplicações. Elas variam desde tochas para ciclos de trabalho pesados para atividades envolvendo altas correntes até tochas leves para baixas correntes e soldagem fora de posição. Em ambos os casos estão disponíveis tochas refrigeradas a água ou secas (refrigeradas pelo gás de proteção), e tochas com extremidades retas ou curvas. Geralmente são adicionados sistemas de refrigeração na tocha para facilitar o manuseio. Nos casos em que são executados trabalhos com altas correntes é possível usar uma tocha mais robusta.

1. CABO DE SOLDA (NEGATIVO) 2. REFRIGERAÇÃO DA TOCHA (ÁGUA) 3. GÁS DE PROTEÇÃO 4. GATILHO DA TOCHA 5. ÁGUA DE REFRIGERAÇÃO PARA A TOCHA 6. CONDUÍTE DO ARAME 7. GÁS DE PROTEÇÃO VINDO DO CILINDRO 8. SAÍDA DE ÁGUA DE REFRIGERAÇÃO 9. ENTRADA DE ÁGUA DE REFRIGERAÇÃO 10. ENTRADA DE 42 V (CA) 1. CABO DE SOLDA (POSITIVO) 12. CONEXÃO PARA A FONTE PRIMÁRIA (220/380/440 V)

Figura 6 - Instalações para a soldagem manual

A Figura 7 mostra as partes de uma tocha seca típica (tocha con- vencional ou refrigerada pelo gás de proteção) com extremidade curva, contendo os seguintes acessórios: bico de contato; bocal; conduíte; cabo.

Figura 7 - Tocha MIG/MAG típica

O bico de contato é fabricado de cobre e é utilizado para conduzir a energia de soldagem até o arame bem como dirigir o arame até a peça. A tocha (e também o bico de contato) é conectada à fonte de soldagem pelo cabo de solda. Como o arame deve ser alimentado facilmente pelo bico de contato e também fazer um bom contato elétrico, seu diâmetro interno é importante. O folheto de instruções fornecido com cada tocha relaciona o diâmetro correto do bico de contato para cada diâmetro de arame. O bico de contato, que é uma peça de reposição, deve ser preso firmemente à tocha e centrado no bocal.

O bocal direciona um fluxo de gás até a região de soldagem. Bocais grandes são usados na soldagem a altas correntes onde a poça de fusão é larga. Bocais menores são empregados na soldagem a baixas correntes.

O conduíte é conectado entre a tocha e as roldanas de alimentação. Ele direciona o arame à tocha e ao bico de contato. É necessária uma alimentação uniforme para se obter a estabilidade do arco. Quando não suportado adequadamente pelo conduíte, o arame pode se enroscar. Quando se usam arames de aço, recomenda-se que a espiral do conduíte seja de aço. Outros materiais como nylon e outros plásticos devem ser empregados para arames de alumínio. A literatura fornecida com cada tocha lista os conduítes recomendados para cada diâmetro e material do arame.

Alimentador de arame

O motor de alimentação de arame e o controle de soldagem são freqüentemente fornecidos em um único módulo — o alimentador de arame — mostrado na Figura 6. Sua principal função é puxar o arame do carretel e alimentá-lo ao arco. O controle mantém a velocidade predeterminada do arame a um valor adequado à aplicação. O controle não apenas mantém a velocidade de ajuste independente do peso, mas também regula o início e fim da alimentação do arame a partir do sinal enviado pelo gatilho da tocha.

O gás de proteção, a água e a fonte de soldagem são normalmente enviados à tocha pela caixa de controle. Pelo uso de válvulas solenóides os fluxos de gás e de água são coordenados com o fluxo da corrente de soldagem. O controle determina a seqüência de fluxo de gás e energização do contator da fonte. Ele também permite o pré e pós-fluxo de gás.

Fonte de soldagem

Quase todas as soldas com o processo MIG/MAG são executadas com polaridade reversa (C+). O pólo positivo é conectado à tocha, enquanto o negativo é conectado à peça. Já que a velocidade de alimentação do arame e, portanto, a corrente, é regulada pelo controle de soldagem, o ajuste básico feito pela fonte de soldagem é no comprimento do arco, que é ajustado pela tensão de soldagem. A fonte de soldagem também pode ter um ou dois ajustes adicionais para uso com outras aplicações de soldagem (por exemplo, indutância).

Soldagem automática

Equipamentos automáticos são utilizados quando a peça pode ser facilmente transportada até o local de soldagem ou onde muitas atividades repetitivas de soldagem justifiquem dispositivos especiais de fixação. O caminho do arco é automático e controlado pela velocidade de deslocamento do dispositivo. Normalmente a qualidade da solda é melhor e a velocidade de soldagem é maior.

Como pode ser observado na Figura 8, o equipamento de soldagem em uma configuração automática é o mesmo que numa manual, exceto: a tocha é normalmente montada diretamente sob o motor de alimentação do arame, eliminando a necessidade de um conduíte; dependendo da aplicação, essa configuração pode mudar; o controle de soldagem é montado longe do motor de alimentação do arame. Podem ser empregadas caixas de controle remoto; adicionalmente, outros dispositivos são utilizados para proporcionar o deslocamento automático do cabeçote. Exemplos desses dispositivos são os pórticos e os dispositivos de fixação.

O controle de soldagem também coordena o deslocamento do conjunto no início e no fim da soldagem.

1. CABO DE SOLDA (NEGATIVO) 2. CABO DE SOLDA (POSITIVO) 3. DETECÇÃO DE CORRENTE E TENSÃO DE SOLDAGEM 4. ENTRADA DE 42 V (CA) 5. CONEXÃO PARA A FONTE PRIMÁRIA (220/380/440 V) 6. ENTRADA DE ÁGUA DE REFRIGERAÇÃO 7. ENTRADA DO GÁS DE PROTEÇÃO 8. SAÍDA PARA O MOTOR DE DESLOCAMENTO DO PÓRTICO

9. ENTRADA 42 V (CA) PARA A MOVIMENTAÇÃO / PARADA DO CABEÇOTE

10. MOTOR DE ALIMENTAÇÃO DO ARAME 1. ENTRADA DO GÁS DE PROTEÇÃO 12. ENTRADA DE ÁGUA DE REFRIGERAÇÃO 13. SAÍDA DE ÁGUA DE REFRIGERAÇÃO

Figura 8 - Instalações para a soldagem automática (mecanizada)

Capítulo 3 Suprimento de energia

A fonte de energia

Fontes de corrente contínua e de tensão constante são empregadas na maioria dos casos de soldagem MIG/MAG. Essa característica contrasta com as fontes de corrente constante utilizadas na soldagem TIG e com eletrodos revestidos. Uma fonte MIG/MAG proporciona uma tensão do arco relativamente constante durante a soldagem. Essa tensão determina o comprimento do arco. Quando ocorre uma variação brusca da velocidade de alimentação do arame, ou uma mudança momentânea da tensão do arco, a fonte aumenta ou diminui abruptamente a corrente (e, portanto, a taxa de fusão do arame) dependendo da mudança no comprimento do arco. A taxa de fusão do arame muda automaticamente para restaurar o comprimento original do arco. Como resultado, alterações permanentes no comprimento do arco são efetuadas ajustando-se a tensão de saída da fonte. A velocidade de alimentação do arame que o operador seleciona antes da soldagem determina a corrente de soldagem (veja a Figura 9). Esse parâmetro pode ser alterado sobre uma faixa considerável antes que o comprimento do arco mude o suficiente para fazer o arame tocar na peça ou queimar o bico de contato.

Figura 9 - Influência da velocidade de alimentação do arame

Variáveis da fonte

A característica de autocorreção do comprimento do arco do sistema de soldagem por tensão constante é muito importante na produção de condições estáveis de soldagem. Características elétricas específicas — a tensão do arco, a inclinação da curva tensão-corrente da fonte e a indutância, dentre outras — são necessárias para controlar o calor do arco, os respingos, etc.

Tensão do arco

A tensão do arco é a tensão entre a extremidade do arame e a peça. Devido às quedas de tensão encontradas no sistema de soldagem a tensão do arco não pode ser lida diretamente do voltímetro da fonte.

A tensão de soldagem (comprimento do arco) tem um importante efeito no modo de transferência de metal desejado. A soldagem por curto-circuito requer tensões relativamente baixas, enquanto a soldagem em aerossol necessita de tensões maiores. Deve ser observado também que, quando a corrente de soldagem e a taxa de fusão do arame são aumentadas, a tensão de soldagem também deve ser aumentada um tanto para manter a estabilidade. A Figura 10 mostra uma relação entre a tensão do arco e a corrente de soldagem para os gases de proteção mais comuns empregados na soldagem MIG/MAG de aços carbono. A tensão do arco é aumentada com o aumento da corrente de soldagem para proporcionar a melhor operação.

Figura 10 - Relação entre a tensão do arco e a corrente de soldagem

Inclinação da curva

A Figura 1 ilustra as características tensão-corrente de uma fonte MIG/MAG. O ângulo da curva com a horizontal é definido como a inclinação da curva da fonte. Esse parâmetro refere-se à redução na tensão de saída com o aumento da corrente. Então, uma fonte teoricamente de tensão constante na realidade não proporciona tensão constante, havendo uma queda na tensão de circuito aberto com o aumento da corrente.

A inclinação da curva de uma fonte, como especificada pelo fabricante e medida nos terminais de saída, não representa a inclinação total do sistema. Qualquer componente que acrescente resistência ao sistema de soldagem aumenta a inclinação da curva e a queda de tensão para uma dada corrente de soldagem. Cabos, conexões, terminais, contatos sujos, etc., todos fazem aumentar a inclinação da curva. Por isso, em um sistema de soldagem, a inclinação da curva deve ser medida no arco.

Figura 1 - Cálculo da inclinação da curva de um sistema de soldagem

A inclinação da curva em um sistema MIG/MAG é usada durante a soldagem por curto-circuito para limitar a corrente de curto-circuito de tal modo a reduzir a quantidade de respingos quando os curtos- circuitos entre o arame e a peça forem interrompidos. Quanto maior for a inclinação da curva, menores serão as correntes de curtocircuito e, dentro dos limites, menor será a quantidade de respingos.

O valor da corrente de curto-circuito deve ser alto o suficiente (mas não tão alto) para fundir o arame. Quando a inclinação é quase nula no circuito de soldagem a corrente aumenta até um valor muito alto, causando uma reação violenta, mas restrita. Isso causa respingos.

Quando uma corrente de curto-circuito for limitada a valores excessivamente baixos por causa de uma inclinação muito alta, o arame pode conduzir toda a corrente, e o curto-circuito não se interromperá por si só. Nesse caso o arame pode apinhar-se na peça ou ocasionalmente topar na poça de fusão e romper-se. Esses fenômenos são mostrados esquematicamente na Figura 12.

Figura 12 - Efeito de uma inclinação muito grande na curva característica

Quando a corrente de curto-circuito estiver no valor correto a separação da gota fundida do arame é suave, com muito poucos respingos. As correntes de curto-circuito típicas requeridas para a transferência de metal e a melhor estabilidade do arco podem ser obser- vadas na Tabela I.

Diâmetro do arame Tipo de arame pol (") m

Corrente de curto-circuito (A)

Aço carbono

Tabela I - Correntes típicas de curto-circuito requeridas para a transferência de metal

Indutância

As fontes não respondem instantaneamente às mudanças de carga. A corrente leva um tempo finito para atingir um novo valor. A indutância no circuito é a responsável por esse atraso. O efeito da indutância pode ser entendido analisando-se a curva mostrada na Figura 13. A curva A mostra uma curva típica de corrente-tempo com indutância presente quando a corrente aumenta de zero até o valor final. A curva B mostra o caminho que a corrente percorreria se não houvesse indutância no circuito. A corrente máxima alcançada durante um curto é determinada pela inclinação da curva característica da fonte. A indutância controla a taxa de aumento da corrente de curtocircuito. A taxa pode ser reduzida de maneira que o curto possa ser interrompido com um mínimo de respingos. A indutância também armazena energia. Ela fornece ao arco essa energia armazenada depois que o curto é interrompido, e causa um arco mais longo.

Figura 13 - Mudança no aumento da corrente devido à indutância

Na soldagem por curto-circuito um aumento na indutância aumenta o tempo de arco "ativo". Isso, por sua vez, torna a poça de fusão mais fluida, resultando em um cordão de solda mais achatado. A diminuição da indutância causa o efeito contrário. A Figura 14 mostra a influência da indutância no aspecto de cordões de solda feitos por meio da soldagem por curto-circuito com misturas argônio-oxigênio e hélio-argônio-dióxido de carbono. O cordão de solda no 1, confeccio- nado com uma mistura 98% Ar / 2% O2 e sem indutância, apresenta uma crista, como pode ser observado na seção reta. No meio do cor- dão de solda foi imposta uma indutância de 500 µH. A crista não ficou tão proeminente, e o cordão de solda permaneceu convexo.

O cordão de solda no 2, confeccionado com uma mistura de He- Ar-CO2, também se apresenta convexo. A quantidade de respingos na chapa é considerável. Quando a indutância foi introduzida no meio da amostra, a redução da quantidade de respingos foi notável; o cordão tornou-se achatado e a seção reta abaixo à direita mostra que a penetração na peça aumentou.

(Parte 2 de 5)

Comentários