Circuitos Corrente alternada

Circuitos Corrente alternada

(Parte 4 de 10)

Figura 3.4. Ponta de prova atenuadora ligada a um osciloscópio. Na prática a capacitância parasita do osciloscópio varia de um instrumento a outro. C então é um capacitor variável e se ajusta para dar um fator de atenuação independente da frequência. Este procedimento se chama “compensação”.

A ponta de prova também facilita medidas em baixa frequência com acoplamento ac como, por exemplo, quando queremos medir o “ripple” de uma fonte de corrente contínua. Se Rint = 1 MΩ, uma ponta de prova de 10× tem um resistor R = 9 MΩ. No acoplamento de entrada ac, os sinais lentos são fortemente deformados. A frequência de corte (seção 6) sem ponta de prova é de 10 Hz tipicamente, mas com a ponta de prova de 10× a frequência de corte cai para 1 Hz.

Os osciloscópios podem medir até frequências especificadas pela largura de banda dele, geralmente escrita no painel. Valores típicos para osciloscópios de 1 MΩ são 10 ou 20 MHz, podendo chegar a 100

MHz nos modelos mais caros. Osciloscópios de 50 Ω podem chegar até uns 50 GHz. Uma pergunta natural que muitos alunos se fazem é a seguinte: se o osciloscópio do laboratório de ensino (que geralmente têm 1 MΩ // 20 pF) atenua sinais de frequências acima de uns 8 kHz, como é que a largura de banda do osciloscópio é muito maior? A resposta é que a largura de banda é determinada pelo amplificador da entrada vertical, que vem logo após a impedância de entrada. Qualquer sinal elétrico que aparecer na entrada do amplificador vertical será amplificado sem deformação até a frequência especificada pela largura de banda. Note bem que isto não significa que esse sinal de entrada seja igual ao que há no circuito que queremos medir. É responsabilidade do operador garantir que isto aconteça: para isto ele deve se assegurar de que a impedância equivalente do circuito teste vista desde a ponta do cabo

(ou da ponta de prova) seja |Zeq| << |Zint| para todas as frequências dentro da largura de banda do osciloscópio. Por exemplo, se medimos sobre um capacitor de 1 µF (e não estiver em paralelo com um indutor), então a capacitância do cabo e a interna do osciloscópio são irrelevantes já que 1 µF em paralelo com 100 ou 200 pF continua sendo 1 µF. Neste caso a voltagem medida pelo osciloscópio é igual à do

¯

Impedância complexa 15 capacitor a qualquer frequência alta (exceto talvez a frequência 0 ou muito baixa se o capacitor estiver em série com um resistor de valor > 1 MΩ).

Exercício 3.1: Mostre que a impedância equivalente de um resistor R em paralelo com um indutor L é ZRLjLRRL=++()/()ωωω2. Este é um exemplo onde ℜ depende de ω.

Exercício 3.2: A resistência equivalente de dois resistores em paralelo é sempre menor que cada uma das resistências: R1//R2 < R1 e R1//R2 < R2. No caso de impedâncias complexas o módulo de Z1//Z2 não sempre é menor que o módulo de Z1 ou de Z2. Por exemplo, um indutor e um capacitor em paralelo tem uma impedância cujo módulo, ωL/|ω2LC – 1|, pode ser muito maior que ωL ou maior que 1/ωC, ou maior que ambas, dependendo do valor ω. Não obstante isso, se uma das impedâncias é um resistor R, então mostre que |R//Z| ≤ min{R, |Z|}, onde o igual acontece só se uma das impedâncias é nula. (Nota: na demonstração é necessário usar o fato que a parte real de qualquer impedância é sempre ≥ 0. Este fato será provado na seção 3.3).

Exercício 3.3: (resolvido) Compensação da ponta de prova de osciloscópios: A impedância de entrada de um osciloscópio é de 1 MΩ e têm uma capacitância parasita de 20 pF. Uma ponta de prova que atenua por um fator 10 vezes é ligado a este osciloscópio através de um cabo coaxial de capacitância Cc = 250 pF. O circuito da ponta de prova é mostrado na Figura 3.4. Quanto devem ser R e C para que atenue por um fator 10 independentemente da frequência?

Solução: Suponhamos que queremos medir uma voltagem a uma frequência ω e amplitude Ve. A voltagem medida pelo osciloscópio é a voltagem Vo sobre a sua resistência interna Ro = 1 MΩ, e queremos que seja Vo = Ve /10 independentemente de ω. Para simplificar o problema notemos que a capacitância do cabo está em paralelo com a capacitância interna do osciloscópio de modo que podemos esquematizar o circuito como na Figura 3.5, onde substituímos o cabo e o capacitor parasita do osciloscópio por um único capacitor de capacitância Co = Cc + 20 pF = 270 pF.

1MΩ20 pF + CcVo Ve

VoVe= Z2

Figura 3.5. Esquema simplificado do circuito da Figura 3.4. O problema agora é o de um divisor de tensão, ou seja,

VZ V Z Zoe=+ 21 2/( ). com impedâncias Z1 e Z2 dadas por

Z Rj C

Rj C R jR C

Z Rj C

Rj C R jR Coooo o o

Em geral, o fator de atenuação deste divisor,

Z Z Rj RC

depende de ω; mas se RC = RoCo então esse fator não depende de ω e vale

Substituindo pelo valor de Ro obtemos R = 9 MΩ. O valor de C que satisfaz a condição RC = RoCo é então C = (1 MΩ)×(270 pF) /(9 MΩ) = 30 pF.

¯

16Circuitos de Corrente Alternada

Exercício 3.4 - Influência da impedância interna do osciloscópio em medidas de voltagem: Com ilustrado na Figura 3.3, a impedância de entrada de um osciloscópio é formada por um resistor R0 de 1 MΩ em paralelo com um capacitor C0 de 20 pF.

Este osciloscópio é utilizado para medir a voltagem de saída de um gerador com impedância interna de Zint = 50 Ω (real e independente da frequência) através de um cabo coaxial RG-58 (100 pF/m) de 30 cm. Para baixas frequências o osciloscópio mede corretamente a fem, já que R0 >> Zint (se diz que o instrumento de medição “não carrega” o gerador), porém, a medida que aumentamos a frequência acima de uns poucos kHz a impedância interna do osciloscópio começa a cair devido a C0 (1/ωC0 = R0 para f = 7.96 kHz). A precisão de um osciloscópio é tipicamente de ±1%. Até que frequência a voltagem medida no osciloscópio é igual à fem do gerador dentro de um erro de 1 %? Quanto se (no lugar do cabo de 30 cm) utilizarmos um ponta de prova

(devidamente compensada) de 10×? [Resposta: 80 kHz sem, 800 kHz com ponta de prova].

3.3 Potência média

A potência instantânea dissipada em um circuito elétrico é sempre dada por e deve ser calculada utilizando as correntes e voltagens reais. No caso de corrente alternada a potência instantânea varia periodicamente com o tempo. A potência média dissipada em um período T = 2pi/ω é

Utilizando os valores eficazes

obtemos

Na eq. 3.1 escrevemos a potência média dissipada em uma impedância Z de três formas equivalentes e que destacam similaridades e discrepâncias em relação as fórmulas análogas dos circuitos de corrente contínua:

A primeira forma na eq. 3.1 se parece com a expressão P = VI do caso contínuo, exceto pelo importante fator cosφ, também chamado fator de potência.

A segunda forma na eq. 3.1 é idêntica à potência dissipada em um resistor P = RI2 no caso contínuo e mostra que a parte real de Z é responsável pela dissipação de potência.

A terceira forma na eq. 3.1 mostra uma assimetria em relação ao caso de corrente contínua, onde P =

V2/R. No caso de c.a. a potência éGVef2(e não Vef2/ℜ).

A eq. 3.1 nos leva a conclusões gerais ainda mais importantes: Dado que um elemento passivo só pode dissipar potência (i.e., não pode ser P < 0, em cujo caso estaria gerando energia), as duas últimas formas da eq. 3.1 nos mostram que sempre deve ser

Ou seja, a parte real da impedância e a parte real da admitância de um circuito passivo devem ser sempre positivas (ou nulas).

Notemos que indutores e capacitores ideais não dissipam potência (nos dois casos o fator de potência é nulo). A potência é dissipada sempre nos resistores e pode ser calculada como a soma dos valores de

¯

Impedância complexa 17

RIef2 mas onde Ief é a corrente que passa por cada resistor R. Na prática, tanto capacitores como indutores possuem resistência interna e portanto dissipam potência.

É interessante notar que a máxima transferência de potência de um gerador de c.a. para uma impedância de carga ocorre quando a impedância interna do gerador coincide com o complexo conjugado da impedância de carga. Isto é o análogo do Teorema de máxima transferência de potência da teoria de circuitos de corrente contínua e está demonstrado no Exercício 3.5.

Exercício 3.5 (resolvido): Um gerador de c.a. possui uma impedância interna z e alimenta um circuito com impedância total Z. Mostre que a potência dissipada em Z é máxima se Z = z* (* indica o complexo conjugado) e que neste caso metade da potência total gerada é dissipada no gerador. Este resultado é o análogo do teorema de máxima transferência de potência de circuitos de corrente contínua.

Solução: O gerador produz uma f.e.m. ε mas devido a queda de tensão em z, a tensão aplicada sobre Z é V = ε – zI (Figura 3.6).

Figura 3.6. Gerador com impedância interna alimentando um circuito externo de impedância Z. A corrente no circuito é I = ε /(z + Z). Portanto, se escrevermos z = r + jx e Z = ℜ + jX, a potência dissipada em Z será

PI zZ r x Xef ef ef=ℜ = ℜ

Esta expressão é máxima para x = -X e r = ℜ, ou seja Z = z* (note que não podemos fazer r = -ℜ pois a parte real da impedância de um elemento passivo é sempre positiva ou nula). Neste caso I = ε/2r, PPref==max/ε24, e a potência total fornecida pelo gerador vale

Portanto, na condição de máxima transferência de potência, 50% da potência total é dissipada na impedância interna do gerador e 50% no circuito externo.

¯

Filtros 19

4. Filtros

Os filtros elétricos são muito utilizados em instalações elétricas e equipamentos eletrônicos para rejeitar ruído e para proteger, por exemplo, contra transientes induzidos pela queda de raios durante as tormentas. De modo geral um filtro pode ser representado como um circuito com dois terminais de entrada e dois de saída (Figura 4.1).

(Parte 4 de 10)

Comentários