(Parte 3 de 3)

Em rochas pelíticas soterradas à mais de 3km, o componente relacionado ao excesso de pressão da água domina o potencial de fluido do petróleo, enquanto em rochas grosseiras o componente flutuabilidade predomina. Ao atingir níveis mais rasos da bacia (profundidades menores que 2km), o componente relacionado ao excesso de pressão da água já não domina o potencial de fluido do petróleo. Consequentemente, a migração do petróleo ocorre quando a flutuabilidade supera a pressão capilar, enquanto sua acumulação se dá onde a pressão capilar supera a flutuabilidade.

. Rocha Reservatório

Denomina-se de reservatório à rocha com porosidade e permeabilidade adequadas à acumulação de petróleo. A maior parte das reservas conhecidas encontra-se em arenitos e rochas carbonáticas, embora acumulações de petróleo também ocorrem em folhelhos, conglomerados ou mesmo em rochas ígneas e metamórficas.

5.1. Porosidade e permeabilidade

A porosidade, representada pela letra grega φ, é definida como a porcentagem (em volume) de vazios de uma rocha. Na maioria dos reservatórios a porosidade varia de 10 a 20%. A porosidade absoluta corresponde ao volume total de vazios, enquanto a

Geologia do Petróleo w.pgt.com.br porosidade efetiva se refere apenas aos poros conectados entre si. Os reservatórios normalmente apresentam variações horizontais e verticais de porosidade. A quantidade, tamanho, geometria e grau de conectividade dos poros controlam diretamente a produtividade do reservatório. Medida diretamente, em amostras de testemunho, ou indiretamente, através de perfis elétricos, a porosidade de uma rocha pode ser classificada como insignificante (0-5%), pobre (5-10%), regular (10-15%), boa (15-20%), ou muito boa (>20%).

A porosidade primária (ou deposicional) é formada durante a deposição dos sedimentos, podendo ser inter- ou intragranular. Este tipo de porosidade tende a diminuir como o soterramento, pelo efeito da compactação mecânica e da diagênese. Já a porosidade secundária forma-se após a deposição, geralmente como resultado da dissolução de minerais. A porosidade primária é mais comum em arenitos, enquanto a secundária ocorre com mais freqüência nas rochas carbonáticas. As fraturas podem aumentar consideravelmente o volume de vazios das rochas. Em reservatórios areníticos e carbonáticos as fraturas podem contribuir para o aumento da conectividade dos poros, enquanto nos folhelhos, rochas ígneas e metamórficas as mesmas respondem por quase toda porosidade.

A permeabilidade, representada geralmente pela letra K, é a capacidade da rocha de transmitir fluido, sendo expressa em Darcys (D) ou milidarcys (md). Uma rocha tem 1D de permeabilidade quando transmite um fluido de 1cP (centipoise) de viscosidade com uma vazão de 1cm3/s, através de uma seção de 1cm2 e sob um gradiente de pressão de 1atm/cm. Controlada principalmente pela quantidade, geometria e grau de conectividade dos poros, a permeabilidade de uma rocha é medida diretamente, em amostras de testemunho, e pode se classificada como baixa (<1md), regular (1-10md), boa (10-100md), muito boa (100-1000md) e excelente (>1000md). A maior parte dos reservatórios possui permeabilidades de 5 a 500md.

A permeabilidade raramente é a mesma em todas as direções numa rocha sedimentar, sendo geralmente maior na horizontal do que na vertical. Uma vez que é inversamente proporcional à viscosidade do fluido, a permeabilidade de um reservatório para o gás é muito maior do que para o óleo. Assim, enquanto um reservatório pode produzir gás com apenas alguns milidarcys, para a produção de óleo são necessários pelo menos dezenas de milidarcys. Quando mais de um fluido divide o espaço poroso (como é o caso dos reservatórios com água, óleo e/ou gás), cada fluido apresenta uma permeabilidade relativa, que varia em função da sua saturação. Ou seja, a permeabilidade é máxima (permeabilidade absoluta, Ka) quando um fluido ocupa 100% dos poros, e decresce

0Geologia do Petróleo w.pgt.com.br

(permeabilidade relativa, Kr) à medida que este fluido divide o espaço poroso com outro fluido. Ë necessária uma saturação mínima para que um fluido consiga fluir. No caso do óleo, uma saturação mínima em torno de 20% é necessária para que o mesmo possa fluir (Kr>0).

5.2. Qualidade do reservatório

As características de permoporosidade de um reservatório refletem basicamente a textura da rocha. De modo geral, porosidade e permeabilidade são diretamente proporcionais ao grau de seleção e tamanho dos grãos e inversamente proporcional à esfericidade. Outrossim, variações laterais e verticais da permoporosidade são fortemente controladas pelas características do ambiente deposicional. Assim, em arenitos eólicos com estratificação cruzada, a permeabilidade vertical e a horizontal podem apresentar diferenças de até duas ordens de grandeza. Já em um corpo de arenito canalizado as permeabilidades podem aumentar significativamente das margens para o centro do paleocanal.

A diagênese também pode alterar completamente as características permoporosas originais de uma rocha reservatório. Em arenitos, os processos diagenéticos mais importantes são a cimentação e a dissolução. A cimentação quando em pequenas proporções pode ser favorável, uma vez que previne a produção de grãos de areia junto com o óleo. Quando em elevada proporção, a cimentação pode obliterar completamente a porosidade original, reduzindo a permeabilidade a praticamente zero. A calcita, o quartzo e as argilas autigênicas (caolinita, ilita e montmorilonita) constituem os cimentos mais comuns em arenitos. Em rochas carbonáticas os efeitos da diagênese são mais importantes, uma vez que a calcita é menos estável do que o quartzo. Conseqüentemente, a cimentação e a dissolução podem tanto piorar quanto melhorar a qualidade do reservatório. Cabe ressaltar que a entrada do óleo no reservatório pode contribuir para preservar as características permoporosas do reservatório, uma vez que o mesmo pode inibir a diagênese.

A continuidade do reservatório também constitui um fator crítico para a sua produtividade. De modo geral, se distingue a espessura total (gross pay) do reservatório, que corresponde a distância vertical entre o topo do reservatório e o contato óleo-água, e a espessura ‘’líquida’’ (net pay), equivalente a espessura de reservatório de onde o petróleo pode efetivamente ser produzido.

Geologia do Petróleo w.pgt.com.br

Os principais causas de descontinuidade em reservatórios são as barreiras diagenéticas, deposicionais e tectônicas. As barreiras diagenéticas são constituídas geralmente por níveis cimentados relacionados a ‘’fronts’’ diagenéticos e ao petróleo (ex: contato óleoágua). As barreiras deposicionais estão relacionadas com a forma dos corpos de rocha reservatório e com a distribuição espacial das fácies a eles relacionadas. Assim, uma camada de arenito constituída por corpos delgados de areia intercalados com níveis contínuos de folhelhos pode se msotrar um reservatório altamente compartimentado. Já as barreiras tectônicas são representadas principalmente pelas falhas, que podem por si só constituir uma barreira como pode justapor rochas reservatório e selante, dificultando o fluxo de fluidos.

A definição da estratégia de produção, bem como o cálculo das reservas de uma jazida, requerem um conhecimento detalhado da qualidade e continuidade do reservatório em três dimensões.

. Trapas

Trapas são situações geológicas em que o arranjo espacial de rochas reservatório e selante possibilita a acumulação de petróleo.

6.1. Trapas e rochas selantes

Uma trapa pode ser caracterizada através de um conjunto de parâmetros: o ápice ou crista corresponde ao ponto mais alto da trapa, o ‘’spill point’’ representa o ponto mais baixo onde pode ser encontrado petróleo, e o fechamento, a distância vertical entre o ápice e o ‘’spill point’’. Uma trapa contém água, óleo e/ou gás, podendo apresentar contatos bruscos ou transicionais, e de inclinação variável (horizontal sob condições hidrostáticas, ou inclinado sob condições hidrodinâmicas).

As trapas podem ser classificadas como estruturais, estratigráficas, hidrodinâmicas ou mistas. As trapas estruturais são aquelas cuja geometria é o resultado de atividade tectônica, estando relacionadas a falhas, dobras ou diápiros. Anticlinais associados a falhas reversas ou normais constituem o tipo de trapa estrutural mais comum. As trapas estratigráficas são aquelas resultantes de variações litológicas, podendo ser de origem

Geologia do Petróleo w.pgt.com.br deposicional (ex: recifes, lentes de arenitos, etc) ou pós-deposicional (ex: truncamentos, barreiras diagenéticas, etc). As trapas hidrodinâmicas formam-se em áreas onde o fluxo descendente de água retém o petróleo sem nenhum tipo de fechamento estrutural ou barreira estratigráfica. As trapas mistas são o resultado da combinação de duas de quaisquer situações acima.

As rochas selantes ou capeadoras são as responsáveis pela retenção do petróleo nas trapas. Devem apresentar baixa permeabilidade associada com alta pressão capilar, de modo a impedir a migração vertical do petróleo. Os evaporitos (especialmente a halita) são os capeadores mais eficientes, embora os folhelhos sejam os mais comuns nas acumulações de petróleo. Os folhelhos podem nos casos em que a pressão capilar não é suficientemente alta, atuar como capeadores seletivos, impedindo a passagem do óleo e permitindo a perda de gás da trapa. Cabe ressaltar que a capacidade selante de uma rocha é dinâmica. Um folhelho capeador pode, com o aumento da compactação e alguma atividade tectônica, fraturar-se e perder sua capacidade selante.

Para que seja possível a formação de uma jazida petrolífera, é fundamental que a formação da trapa seja contemporânea ou anteceda a geração e migração do petróleo.

6.2. Alteração do petróleo na trapa

A composição do petróleo que chega a trapa depende essencialmente da natureza da matéria orgânica e da evolução do processo de geração e migração. Esta composição, entretanto, pode ser alterada na trapa por uma série de processo de alteração: craqueamento térmico, ‘’deasphalting’’ e biodegradação.

O craqueamento térmico é conseqüência do aumento de temperatura do reservatório devido à subsidência, mudança do gradiente geotérmico ou influência de intrusões ígneas. O processo de degradação térmica do petróleo também pode ser descrito pelas formulações clássicas da cinética de primeira ordem, sendo controlado pela temperatura e pelo tempo. O craqueamento resulta no aumento da proporção dos hidrocarbonetos leves às expensas dos compostos mais pesados. Sob temperaturas muito, o petróleo é transformado basicamente em metano e um resíduo carbonoso aromatizado (pirobetume).

O processo de ‘’deasphalting’’ consiste na precipitação dos asfaltenos causada pela dissolução de grandes quantidades de gás e/ou hidrocarbonetos leves no petróleo

Geologia do Petróleo w.pgt.com.br acumulado. Esses hidrocarbonetos leves podem se formar na própria acumulação, pelo efeito do craqueamento térmico, bem como resulatar de um segundo pulso de migração secundária que atingiu o reservatório.

A biodegradação é o processo de alteração do petróleo pela ação de bactérias. A biodegradação do petróleo está normalmente associada ao influxo de água meteórica no reservatório, uma vez que as bactérias que consomem o petróleo são principalmente aeróbicas, dependendo, portanto, do oxigênio e nutrientes trazidos pela água. O consumo dos hidrocarbonetos pelas bactérias é seletivo, seguindo de modo geral a seguintes sequência: alcanos normais, seguidos pelos ramificados, cíclicos e, finalmente, os hidrocarbonetos aromáticos. A perda preferencial dos compostos mais leves resulta no aumento da densidade e da viscosidade do óleo acumulado.

6.3. Cálculo de reservas e métodos de produção

No cubagem do volume de petróleo recuperável de uma jazida deve ser levado em consideração volume do reservatório que contém petróleo, a porosidade, a saturação de óleo, o fator de recuperação e o fator volume de formação.

O volume do reservatório é calculado com base em mapas estruturais e isópacos. A porosidade e a saturação de óleo (fração do espaço poroso ocupado pelo petróleo) são definidas com base em perfis elétricos. O fator de recuperação (percentagem do volume total do óleo que pode ser produzido) é estimado por analogia com reservatórios similares já em produção. O fator volume de formação é usado para a conversão do volume do petróleo no reservatório para as condições de P e T na superfície, correspondendo ao volume de óleo no reservatório para fornecer um barril de petróleo na superfície. Esse fator pode ser estimado com base na composição do petróleo (varia de 1,08 nos óleo pesados, até 2,0 nos muito leves) ou determinado com precisão através de análises de PVT (pressão-volume-temperatura) em laboratório.

A produção do petróleo depende da diferença de pressão entre poço e reservatório.

Existem três mecanismos naturais para o fluxo espontâneo do petróleo até a superfície: gás dissolvido, capa de gás e empuxo de água.

A presença de gás dissolvido nas mais variadas proporções é comum em acumulações de petróleo. A energia do gás dissolvido é liberada com a expansão decorrente da queda de pressão entre o reservatório e a superfície. À medida que o gás se expande, ele ‘’arrasta’’ o óleo ao longo do gradiente de pressão. Com o avanço da produção e

Geologia do Petróleo w.pgt.com.br a redução da quantidade de gás, observa-se o declínio da pressão do reservatório até a mesma alcançar a pressão de saturação (‘’bubble point’’). Neste ponto, o gás sai de solução sob a forma de bolhas, podendo formar uma capa de gás (denominada de secundária) sobre o óleo. Esta capa exerce pouca influência sobre a eficiência da produção, e tende a aumentar até ocupar o espaço poroso ocupado pelo óleo. A eficiência da recuperação através deste mecanismo está em torno de 20%.

A capa de gás livre, por sua vez, indica que a quantidade de gás excede a necessária para saturar o óleo. A energia provém tanto gás dissolvido quanto da capa de gás comprimido na porção superior do trapa. Com o avanço da produção também se observa o declínio da pressão do reservatório e uma expansão da capa de gás, ocupando o espaço ocupado pelo óleo. A eficiência da recuperação através deste mecanismo pode variar de 20 a 50%.

O mecanismo de produção por meio do empuxo de água ocorre nas acumulações onde a pressão é transmitida pelo aquífero através do contato óleo-água ou gás-água. Neste caso, a água substitui o petróleo produzido, mantendo a pressão do reservatório. No caso do empuxo de água não estar sendo suficiente para manter a pressão, os poços podem ser fechados e a pressão original será restaurada. A eficiência da recuperação através deste mecanismo pode chegar a 80%.

No caso de reservatórios em que a pressão declina até a atmosférica, a única energia disponível é a da gravidade, pouco eficiente e com resultados anti-econômicos. Em alguns casos, a energia do reservatório pode ser recuperada com a injeção de gás sob pressão.

(Parte 3 de 3)

Comentários