(Parte 1 de 3)

Carboidratos

Capítulo 5

5 Carboidratos

Objetivos

1. Classificar um monossacarídeo por meio do número de carbonos de sua molécula.

2. Identificar se um monossacarídeo pertence à série D ou L pela sua estrutura acíclica.

3. Identificar os isômeros α e β na estrutura cíclica dos monossacarídeos. 4. Compreender a estrutura da glicose na sua forma monomérica e polimérica.

5. Identificar os tipos de ligações existentes entre os monossacarídeos nos oligossacarídeos e polissacarídeos.

6. Identificar as estruturas da maltose, sacarose e lactose, indicando-lhes a nomenclatura.

Os carboidratos (glicídeos ou sacarídeos) são as principais fontes alimentares para produção de energia além de exercerem inúmeras funções estruturais e metabólicas nos organismos vivos. São substâncias que contêm carbono, hidrogênio e oxigênio de acordo com a fórmula geral [CH2O]n onde n ≥ 3 e ocorrem como compostos simples e complexos. São poliidroxialdeídos ou poliidroxicetonas, ou ainda, substâncias que por hidrólise formam aqueles compostos. São classificados como: monossacarídeos, dissacarídeos, oligossacarídeos e polissacarídeos de acordo com o número de unidades de açúcares simples que contém. Os carboidratos ligados covalentemente a proteínas e lipídeos são denominados glicoconjugados e estão distribuídos em todos os seres vivos, mais notadamente entre os eucariontes. Alguns carboidratos (ribose e desoxirribose) fazem parte da estrutura dos nucleotídeos e dos ácidos nucléicos.

120 • Motta • Bioquímica

Os carboidratos também participam de vários processos biológicos como a transdução de sinal, interações célula−célula e endocitose que envolvem tanto os glicoconjugados como as glicoproteínas, os glicolipídeos ou as moléculas de carboidratos livres.

5.1 Monossacarídeos

Os monossacarídeos (oses ou açúcares simples) são as unidades básicas dos carboidratos. São constituídos por uma unidade de poliidroxialdeído ou de poliidroxicetona contendo três a nove átomos de carbono, sendo o principal combustível para a maioria dos seres vivos. Os monossacarídeos mais simples são as trioses (três átomos de carbono): gliceraldeído e diidroxiacetona.

CH2OH3

Gliceraldeído Diidroxiacetona

Os monossacarídeos são classificados de acordo com a natureza química do grupo carbonila e pelo número de seus átomos de carbono. Os que têm grupos aldeídicos são aldoses e os que têm grupos cetônicos, formam as cetoses. Os monossacarídeos com quatro átomos de carbono são denominados tetroses; com cinco, pentoses; com seis hexoses etc. Por exemplo, o gliceraldeído é uma aldotriose e a diidroxiacetona, uma cetotriose. De modo geral, diferenciam-se os nomes próprios das cetoses pela inserção de ul aos nomes das aldoses correspondentes, como, por exemplo, tetrulose, pentulose, hexulose etc.

A. Configuração dos monossacarídeos

Com exceção da diidroxiacetona, todos os monossacarídeos possuem átomos de carbono assimétricos (quirais). Para o gliceraldeído, o C2 é o centro assimétrico que origina dois estereoisômeros: o D−gliceraldeído e L−gliceraldeído. São enatiômeros (imagens especulares) um do outro:

CH2OH

CH2OH OHH

D-Gliceraldeído L-Gliceraldeído

As outras aldoses são série D e L com respeito ao D−gliceraldeído e o L-gliceraldeído. Isto significa que todos os açúcares com a mesma configuração do D−gliceraldeído e, portanto, com a mesma configuração no centro assimétrico mais afastado do grupo carbonila, são da série D. As aldoses que representam a configuração do L- gliceraldeído são da série L. O mesmo ocorre com as cetoses com mais de quatro átomos de carbonos. Em geral, as moléculas com n centros assimétricos podem ter 2n estereoisômeros. As aldoses com seis carbonos têm quatro centros de assimetria e assim há 24 = 16 estereoisômeros possíveis (oito na série D e oito na série L). As Figuras 5.1 e 5.2 mostram as relações estereoquímicas das D-aldoses e D−cetoses conhecidas como projeções de Fisher. Nessas estruturas, o esqueleto dos carboidratos está orientado verticalmente com o carbono mais oxidado geralmente no topo.

As aldoses e cetoses da série L são imagens especulares de seus correspondentes da série D:

CH2OH

CH2OH

D-Glicose L-Glicose

As propriedades ópticas dos monossacarídeos são designadas pelos sinais (+), dextrorrotatória e (−), levorrotatória. Estereoisômeros que não são enantiômeros são chamados diastereoisômeros. Os açúcares D−ribose e D−arabinose são diastereoisômeros por serem isômeros mas não imagens especulares. Os diastereoisômeros que diferem na configuração ao redor de um único C são denominados epímeros. A D–glicose e a D–galactose são epímeros porque diferem somente na configuração do grupo OH no C4. A D–manose e a D–galactose não são epímeros pois suas configurações diferem em mais de um carbono.

122 • Motta • Bioquímica

CH2OH

D–Gliceraldeído

CH2OH HO H

CH2OH HO H

D–Eritrose D–Treose

C CH2OH

C CH2OH

C CH2OH

C CH2OH

D–Ribose D–Arabinose D–Xilose D–Lixose

CH2OH HO H

CH2OH HO H

CH2OH HO H

CH2OH HO H

CH2OH HO H

CH2OH HO H

CH2OH HO H

CH2OH HO H

D-Alose D–Altrose D–Glicose D–Manose D–Gulose D–Idose D–Galactose D–Talose

Figura 5.1 Relações estereoquímicas das D-aldoses com três a seis átomos de carbono. As D-aldoses contêm grupamentos aldeído no C1 e têm a configuração do D–gliceraldeído no seu centro assimétrico mais afastado do grupo carbonila. A configuração em torno do C2 distingue os membros de cada par.

CH2OH C

CH2OHO Diidroxiacetona

CH2OH

CH2OH HO H

D–Eritrulose

CH2OH

CH2OH HO H

CH2OH

CH2OH HO H

D–Ribulose D–Xilulose

CH2OH

CH2OH HO H

CH2OH

CH2OH HO H

CH2OH

CH2OH HO H

CH2OH

CH2OH HO H

D–Psicose D–Frutose D–Sorbose D–Tagatose

Figura 5.2 Relações estereoquímicas das D-cetoses com três a seis átomos de carbono. As D–cetoses contêm grupamentos cetônicos no C2 e têm a configuração do D−gliceraldeído no seu centro assimétrico mais afastado do grupo carbonila. A configuração em torno do C3 distingue os membros de cada par.

B. Ciclização de monossacarídeos

Em solução aquosa menos de 1% das aldoses e cetoses se apresentam como estruturas de cadeia aberta (acíclica) mostradas nas Figuras 5.1 e 5.2. Os monossacarídeos com cinco ou mais átomos de carbono ciclizam-se, formando anéis pela reação de grupos alcoólicos com os grupos carbonila dos aldeídos e das cetonas para formar hemiacetais e hemicetais, respectivamente. A reação de ciclização intramolecular torna os monossacarídeos espécies mais estáveis

Por ciclização, os monossacarídeos com mais de cinco átomos de carbono não apresentam o grupo carbonila livre, mas ligado

124 • Motta • Bioquímica covalentemente com uma das hidroxilas presentes ao longo da sua cadeia. O aldeído em C1 na forma em cadeia aberta da glicose reage com a hidroxila em C5, produzindo um anel com seis átomos (5 carbonos e 1 oxigênio), denominado de piranose devido à sua analogia ao pirano. As aldopentoses (ribose) e cetohexoses (frutose) formam anéis pentagonais (4 carbonos e 1 oxigênio) chamados de furanose em analogia com o furano (Figura 5.3 e 5.4).

As estruturas piranose e furanose são hexágonos e pentágonos regulares conhecidas como fórmulas em perspectiva de Haworth. O anel heterocíclico é representado perpendicular ao plano do papel, enquanto os grupos presentes nas fórmulas lineares à direita estão projetados “abaixo” do plano do anel e os que estão à esquerda ficam “acima”. Ocorrem exceções, como a observada com o H do C5 que está abaixo do plano do anel devido à torção necessária para fechá-lo.

Figura 5.3 Ciclização da D-glicose com formação de duas estruturas cíclicas de glicopiranose. A projeção de Fisher (no alto à esquerda) é rearranjada em uma representação tridimensional (no alto à direita). A rotação da ligação entre C4 e C5 aproxima o grupo hidroxila em C5 do grupo aldeído em C1 para formar uma ligação hemiacetal, produzindo dois estereoisômeros, os anômeros α e β que diferem na posição da hidroxila do C1 (no anômero α o grupo OH é representado para baixo e no anômero β o grupo OH é representado para cima). As formas glicopiranosídicas são mostradas como projeção de Haworth, nas quais as ligações mais escuras do anel são projetadas à frente do plano do papel e as ligações mais claras do anel são projetadas para trás.

O carbono carbonila (C1 das aldoses ou o C2 das cetoses) do monossacarídeo cíclico é designado carbono anomérico e constitui

- -Glicopiranose

(Projeção de )D Haworth

CH CH OH2 ou O βα - -Glicopiranose

(Projeção de Haworth) D

HC OH
HC OH
HOC H
HC OH

CH OH2

D-Glicose (Projeção de Fisher)

126 • Motta • Bioquímica um centro de assimetria adicional com duas configurações possíveis. No caso da glicose, as duas formas resultantes são α−D−glicose e β−D–glicose (Figura 5.3). No anômero α, o grupo OH ligado ao carbono anomérico (C1) está abaixo do plano do anel; no anômero β está projetado acima do plano do anel. As formas α e β são anômeras.

Quando em solução aquosa, a α–D–glicose e β–D–glicose se interconvertem livremente para atingir uma mistura de equilíbrio que contém 63,6% do anômero β, 36,4% do anômero α e 1% da forma aberta linear. A interconversão é detectada por alterações na rotação óptica e é chamada mutarrotação. Esse fenômeno também é observado em outras pentoses e hexoses.

Nas estruturas cíclicas dos monossacarídeos os átomos de carbono anoméricos (C1 nas aldoses e C2 nas cetoses) são susceptíveis de oxidação por vários agentes oxidantes contendo íons cúpricos (Cu2+), como as soluções de Fehling ou Benedict. Assim, os monossacarídeos com átomos de carbonos anoméricos livres, são designados açúcares redutores; os envolvidos por ligações glicosídicas, são chamados açúcares não–redutores.

Os monossacarídeos como a frutose e a ribose ciclizam-se para formar estruturas furanóscas.

CH2OH6

CH2OH

CH2OH

CH2OH

H CH2OH

D−Frutose α−D−Frutose β−D−Frutose

CH2OH

CH2OH

D−Ribose α−D−Ribofuranose β−D−Ribofuranose

Figura 5.4 Ciclização da frutose e da ribose

Tanto as hexoses como as pentoses podem assumir as formas de piranose ou de furanose nas fórmulas em perpectiva de Haworth. No entanto, o anel da piranose pode assumir uma corformação de cadeira ou de barco:

C. Derivados de monossacarídeos

Os açúcares simples podem ser convertidos em compostos químicos derivados. Muitos deles são componentes metabólicos e estruturais dos seres vivos.

1. Ácidos urônicos. Os ácidos urônicos são formados quando o grupo terminal CH2OH dos monossacarídeos são oxidados. Dois ácidos urônicos são importantes nos mamíferos: o ácido d−glicurônico e seu epímero, o ácido L−idurônico. Nos hepatócitos, o ácido glicurônico combina-se com moléculas de esteróides, certos fármacos e bilirrubina (um produto de degradação da hemoglobina) para aumentar a solubilidade em água. O processo permite a remoção de produtos do corpo. Tanto o ácido glicurônico como o ácido L– idurônico são carboidratos abundantes no tecido conjuntivo.

Ácido α-D-glicurônico Ácido β-L-idurônico

2. Aminoaçúcares. Nos aminoaçúcares um grupo hidroxila (mais comumente no carbono 2) é substituído por um grupo amino. Esses compostos são constituintes comuns dos carboidratos complexos encontrados associados a lipídeos e proteínas celulares. Os mais freqüentes são: a D−glicosamina e a D−galactosamina. Os aminoaçúcares muitas vezes estão acetilados. O ácido

N−acetilneuramínico (a forma mais comum de ácido siálico) é um produto de condensação da N-acetilmanosamina e do ácido pirúvico. Os ácidos siálicos são cetoses contendo nove átomos de carbonos que podem ser amidados com ácido acético ou glicolítico (ácido hidroxiacético). São componentes das glicoproteínas e glicolipídeos.

OH 2

HO Projeção de haworth

HO 4

2 Conformação de cadeiraConformação de barco

128 • Motta • Bioquímica

H CH2OH

H CH2OH α−D−Glicosamina α−D−Galactosamina

CH2OH

HNHCCH3 O

Ácido siálico (ácido N−acetilneuramínico)

3. Desoxiaçúcares. Nos desoxiaçúcares um grupo −OH é substituído por H. Dois importantes desoxiaçúcares encontrados nas células são: a L−fucose (formado a partir da D−manose por reações de redução) e a 2−desoxi−D−ribose. A fucose é encontrada nas glicoproteínas que determinam os antígenos do sistema ABO de grupos sangüíneos na superfície dos eritrócitos. A desoxirribose é componente do DNA.

CH2OH β-L-Fucose β-D-Desoxirribose

5.2 Dissacarídeos e oligossacarídeos

Quando ligados entre si por uma ligação O−glicosídica, (formada por um grupo hidroxila de uma molécula de açúcar com o átomo de carbono anomérico de outra molécula de açúcar) os monossacarídeos formam uma grande variedade de moléculas. Os dissacarídeos são glicosídeos compostos por dois monossacarídeos (como a maltose, a lactose e a sacarose). Os oligossacarídeos são polímeros relativamente pequenos que consistem de dois a dez (ou mais) monossacarídeos. Os átomos de carbonos anoméricos quando participantes de ligações glicosídicas não são oxidados pelos íons cúpricos.

A. Dissacarídeos

1. Maltose. A maltose é obtida de hidrólise do amido e consiste de dois resíduos de glicose em uma ligação glicosídica α(1→4) onde o C1 de uma glicose liga-se ao C4 de outra glicose. O segundo resíduo de glicose da maltose contém um átomo de carbono anomérico livre (C1), capaz de existir na forma α ou β−piranosídica, sendo assim, um açúcar redutor, além de apresentar atividade óptica (mutarrotação).

CH2OH O

CH2OH

Maltose, ligação α(1→4)

A isomaltose é um dissacarídio onde a ligação é formada entre o C1 de um resíduo de glicose e o C6 de outra, constituindo uma ligação glicosídica α(1→6). A isomaltose também contém átomo de carbono anomérico livre.

CH2

CH2OH H

Isomaltose, ligação α(1→6)

2. Sacarose. A sacarose (açúcar comum extraído da cana) é constituída pela união de uma α-D-glicose com a β−D−frutose, pela ligação glicosídica α,β(1→2) indicando que a ligação ocorre entre os carbonos anoméricos de cada açúcar (C1 na glicose e C2 na frutose). A sacarose é um açúcar não-redutor por não ter terminação redutora livre. Não apresenta, também, atividade óptica (mutarrotação), pois não contém carbono anomérico livre.

3. Lactose. A lactose é encontrada apenas no leite, sendo formada pela união do C1 da β−D−galactose com o C4 da D−glicose, numa

Glicose Frutose

Sacarose

130 • Motta • Bioquímica ligação glicosídica β(1→4). Apresenta mutarrotação e capacidade redutora por possuir carbono anomérico livre na glicose.

CH2OH O

CH2OH

Lactose, ligação β(1→4)

B. Oligossacarídeos

Os oligossacarídeos são pequenos polímeros muitas vezes encontrados ligados a polipeptídeos e a glicolipídeos. Existem duas classes de oligossacarídeos: os N−ligados e os O−ligados. Os oligossacarídeos N−ligados estão unidos a polipeptídeos por uma ligação N−glicosídica com o grupo amino da cadeia lateral do aminoácido asparagina. Os oligossacarídeos O−ligados estão unidos pelo grupo hidroxila da cadeia lateral do aminoácido serina ou treonina nas cadeias polipeptídicas ou pelo grupo hidroxila dos lipídeos de membrana.

5.3 Polissacarídeos

Os polissacarídeos (ou glicanos) são formados por longas cadeias de unidades de monossacarídeos unidas entre si por ligações glicosídicas. São insolúveis em água e não tem sabor nem poder redutor. São classificados como:

• Homopolissacarídeos (homoglicanos) contêm apenas um único tipo de monossacarídeo, por exemplo, amido, glicogênio e celulose.

• Heteropolissacarídeos (heteroglicanos) contêm dois ou mais tipos diferentes de monossacarídeos, por exemplo, ácido hialurônico, condroitina sulfato, dermatana sulfato e heparina.

(Parte 1 de 3)

Comentários