(Parte 4 de 10)

5.1.3.1.1 Do ponto de vista da proteção contra o raio, um subsistema de aterramento único integrado à estrutura é preferível e adequado para todas as finalidades (ou seja, proteção contra o raio, sistemas de potência de baixa tensão e sistemas de sinal).

5.1.3.1.2 Para assegurar a dispersão da corrente de descarga atmosférica na terra sem causar sobretensões perigosas, o arranjo e as dimensões do subsistema de aterramento são mais importantes que o próprio valor da resistência de aterramento. Entretanto, recomenda-se, para o caso de eletrodos não naturais, uma resistência de aproximadamente 10 Ω, como forma de reduzir os gradientes de potencial no soloeap robabilidade de centelhamento perigoso. No caso de solo rochoso ou de alta resistividade, poderá não ser possível atingir valores próximos dos sugeridos. Nestes casos a solução adotada deverá ser tecnicamente justificada no projeto.

5.1.3.1.3 Sistemas de aterramento distintos devem ser interligados através de uma ligação eqüipotencial de baixa impedância.

5.1.3.2 Eletrodos de aterramento 5.1.3.2.1 Os seguintes tipos de eletrodo de aterramento podem ser utilizados: a) aterramento natural pelas fundações, em geral as armaduras de aço das fundações; b) condutores em anel; c) hastes verticais ou inclinadas; d) condutores horizontais radiais; 5.1.3.2.2 Eletrodos em forma de placas ou pequenas grades devem ser evitados, por razões de corrosão.

5.1.3.2.3 No caso de eletrodos não naturais, devem ser instalados vários eletrodos adequadamente distribuídos. O comprimento total dos eletrodos de aterramento, conforme o nível de proteção e para diferentes resistividades do solo, é dado na figura 2, respeitadas as condições de 5.1.3.1.2.

NOTA - Para os níveis I a IV, o comprimento mínimo do eletrodo é independente da resistividade.

Figura 2 - Comprimento mínimo dos eletrodos de aterramento em função dos níveis e da resistividade do solo

5.1.3.2.4 Eletrodos de aterramento profundos são adequados para solos em que a resistividade diminua com a profundidade e onde as camadas de baixa resistividade ocorram a profundidades maiores do que aquelas em que normal- mente são cravadas as hastes de aterramento.

5.1.3.3 Subsistemas de aterramento para condições normais 5.1.3.3.1 Eletrodos de aterramento naturais

As armaduras de aço embutidas nas fundações das estruturas, cujas características satisfaçam às prescrições de 5.1.5, devem ser preferencialmente utilizadas como eletrodo de aterramento natural nas seguintes condições:

a) as armaduras de aço das estacas, dos blocos de fundação e das vigas baldrame devem ser firmemente amarradas com arame recozido em cerca de 50% de seus cruzamentos ou soldadas. As barras horizontais devem ser sobrepostas por no mínimo 20 vezes o seu diâmetro, e firmemente amarradas com arame recozido ou soldadas; b) em fundação de alvenaria pode servir como eletrodo de aterramento, pela fundação, uma barra de aço de construção, com diâmetro mínimo de 8 m, ou uma fita de aço de 25 m x 4 m, disposta com a largura na posição vertical, formando um anel em todo o perímetro da estrutura. A camada de concreto que envolve estes eletrodos deve ter uma espessura mínima de 5 cm; c) as armaduras de aço das fundações devem ser interligadas com as armaduras de aço dos pilares da estrutura, utilizados como condutores de descida naturais, de modo a assegurar continuidade elétrica equivalente à prescrita em d) o eletrodo de aterramento natural assim constituído deve ser conectado à ligação eqüipotencial principal prescrita em 5.2.1, através de uma barra de aço com diâmetro mínimo de 8 m ou uma fita de aço de 25 m x 4 m. Em alternativa, a ligação eqüipotencial principal deve simplesmente ser aterrada a uma armação de concreto armado próxima, quando estas são constituintes do SPDA; e) no caso de se utilizarem as armaduras como constituintes do SPDA, sempre que possível, deve ser prevista a avaliação do aterramento da edificação, por injeção de corrente através da terra, entre a barra TAP, desligada da alimentação exterior, e um eletrodo externo ao edifício; f) além da verificação do aterramento, se a execução da construção não tiver sido acompanhada pelo responsável pelo aterramento, deverá fazer-se a verificação da continuidade elétrica das armaduras, por injeção de corrente entre pontos afastados tanto na vertical como na horizontal. Os valores de impedância medidos costumam situar-se entre alguns centésimos e poucos décimos de ohm, respeitando o valor máximo indicado em 5.1.2.5.5.

Este arranjo é composto de eletrodos radiais (verticais, horizontais ou inclinados), sendo indicado para solos de baixa resistividade (até de 100 Ω.m) e para pequenas estruturas (com perímetro até 25 m). Cada condutor de descida deve ser conectado, no mínimo, a um eletrodo distinto. Devem ser instalados, no mínimo, dois eletrodos que não devem ter comprimento inferior ao estabelecido na figura 2, assim determinado:

a) l 1 - para eletrodos horizontais radiais; b) 0,5 l 1 - para eletrodos verticais (ou inclinados). NOTAS 1 Quando se utilizar uma combinação destes dois tipos de eletrodo, deve-se considerar o comprimento total.

2 Em solos de muito baixa resistividade (até 30 Ω.m), os comprimentos mínimos indicados na figura 2 podem ser desconsiderados, desde que se obtenha uma resistência de aterramento inferior a 10 Ω.

3 Estes tipos de eletrodos de aterramento requerem cuidados quanto às tensões de passo e de toque, caso o local apresente risco para pessoas ou animais. As tensões de passo podem ser reduzidas aumentando-se a profundidade dos eletrodos horizontais, ou a profundidade do topo dos eletrodos verticais; as tensões de toque podem ser minimizadas mediante equalização de potencial (ver 5.2.1).

Este arranjo é composto de eletrodos em anel ou embutidos nas fundações da estrutura e é obrigatório nas estruturas de perímetro superior a 25 m.

5.1.3.4 Sistemas de aterramento para estruturas não providas de SPDA externo

5.1.3.4.1 Em estruturas não providas de SPDA externo, deve ser instalado, para aterramento do SPDA interno, no mínimo, um eletrodo horizontal de comprimento l 1 ou um eletrodo vertical (ou inclinado) de comprimento 0,5 l 1 ,c onforme a figura 2.

5.1.3.4.2 A ligação eqüipotencial principal, exigida em 5.2.1 e pela NBR 5410, deve estar aterrada nesse mesmo eletrodo. 5.1.3.5 Instalação de eletrodos de aterramento não naturais

5.1.3.5.1 Com exceção dos eletrodos de aterramento naturais prescritos anteriormente, os eletrodos de aterramento preferencialmente devem ser instalados externos ao volume a proteger, a uma distância da ordem de 1 m das fundações da estrutura.

5.1.3.5.2 Eletrodos de aterramento formados de condutores em anel, ou condutores horizontais radiais, devem ser instalados a uma profundidade mínima de 0,5 m. Nos eletrodos radiais, o ângulo entre dois condutores adjacentes não deve ser inferior a 60°.

5.1.3.5.3 Hastes de aterramento verticais (ou inclinadas), instaladas em paralelo, devem ser, quando possível uniformemente, distribuídas no perímetro da estrutura, espaçadas entre si por uma distância não inferior ao seu comprimento.

5.1.3.5.4 A profundidade e o tipo dos eletrodos de aterramento devem ser escolhidos de forma a minimizar os efeitos da corrosão e do ressecamento do solo, e assim estabilizar a resistência de aterramento. Em solos de rocha viva, aplica-se o arranjo de aterramento “B” se não for possível fazer aterramento pelas fundações; os condutores devem ser cobertos por uma camada de concreto para proteção mecânica.

NOTA - No projeto e execução do subsistema de aterramento, deve-se considerar que a interligação de metais diferentes, sem precauções adequadas, pode causar problemas graves de corrosão eletrolítica.

Salvo no caso de elementos naturais, os captores e os condutores de descida devem ser firmemente fixados, de modo a impedir que esforços eletrodinâmicos, ou esforços mecânicos acidentais (por exemplo, vibração) possam causar sua ruptura ou desconexão.

5.1.4.2.1 O número de conexões nos condutores do SPDA deve ser reduzido ao mínimo. As conexões devem ser asseguradas por meio de soldagem exotérmica, oxiacetilênica ou elétrica, conectores de pressão ou de compressão, rebites ou parafusos.

NOTA - Conexões embutidas em concreto armado devem atender a 5.1.2.5.4 e 5.1.3.5, a menos que se destinem a estabelecer uma ligação para utilização fora do concreto armado, caso em que devem ser feitas a uma armadura de diâmetro não inferior a 8 m, por solda ou conector com derivação para exterior.

5.1.4.2.2 Para conexão de condutores chatos a estruturas de aço, devem ser utilizados, no mínimo, dois parafusos M8 ou um parafuso M10, com porcas.

5.1.4.2.3 Para conexão de condutores chatos a chapas metálicas com espessura inferior a 2 m, devem ser utilizadas contraplacas com área mínima de 100 cm2, fixadas com dois parafusos M8, no mínimo.

5.1.4.2.4 Para conexão de condutores chatos a chapas metálicas acessíveis somente de um lado, podem ser utilizados quatro rebites de 5 m de diâmetro. Para chapas com espessura mínima de 2 m, também podem ser utilizados dois parafusos auto-atarraxantes de aço inoxidável, com diâmetro de 6,3 m.

5.1.4.2.5 Conexões soldadas devem ser compatíveis com os esforços térmicos e mecânicos causados pela corrente de descarga atmosférica.

5.1.4.2.6 Conexões mecânicas embutidas no solo devem ser protegidas contra corrosão, através da instalação de uma caixa de inspeção com diâmetro mínimo de 250 m que permita o manuseio de ferramenta. Esta exigência não se aplica a conexões entre peças de cobre ou cobreadas com solda exotérmica ou conectores de compressão.

5.1.5 Materiais e dimensões 5.1.5.1 Materiais

5.1.5.1.1 Os materiais utilizados devem suportar, sem danificação, os efeitos térmicos e eletrodinâmicos das correntes de descarga atmosférica, bem como os esforços acidentais previsíveis.

5.1.5.1.2 Os materiais e suas dimensões devem ser escolhidos em função dos riscos de corrosão da estrutura a proteger e do SPDA.

5.1.5.1.3 Os componentes do SPDA podem ser construídos com os materiais indicados na tabela 5, desde que eles tenham condutividade elétrica e resistência à corrosão compatíveis com a aplicação. Outros metais podem ser utilizados, contanto que suas características mecânicas, elétricas e químicas sejam equivalentes.

As dimensões mínimas dos materiais do SPDA são indicadas nas tabelas 3 e 4. Esses valores podem ser aumentados em função de exigências mecânicas ou de corrosão.

5.1.5.3 Proteção contra corrosão

Os riscos de corrosão provocada pelo meio ambiente, ou pela junção de metais diferentes, devem ser cuidadosamente considerados no projeto do SPDA. Em caso de aplicações não previstas na tabela 5, a compatibilidade dos materiais deve ser avaliada. Materiais ferrosos expostos, utilizados em uma instalação de SPDA, devem ser galvanizados a quente, conforme a NBR 6323.

Tabela 5 - Materiais do SPDA e condições de aplicação

Aplicação Corrosão

Material

Ao ar livre Enterrado Embutido no concreto

Embutido no reboco Resistência Risco agravado Eletrolítica

Cobre Maciço, encordoado ou como revestimento de haste de aço -Maciço ou encordoado A mais substâncias

Cloretos altamente concentrados; compostos sulfúricos; materiais orgânicos

Aço de construção comum ou galvanizado a quente

Maciço ou encordoado

Maciço ou encordoado

Maciço ou encordoado -

(Parte 4 de 10)

Comentários