Energia eolica

Energia eolica

(Parte 4 de 5)

A extensão pela qual a velocidade do vento aumenta com a altura é governada por um fenômeno chamado "wind shear". Fricção entre ar mais lentos e mais rápidos conduz ao aquecimento, velocidade do vento mais baixa e muito menos energia de vento disponível perto do solo.

A figura 4.3, ilustra as diferentes áreas (urbana, subúrbios, ou ao nível do mar) e a relação entre suas alturas e velocidades de ventos.

Com este esquema, pode-se perceber que regiões que possuem construções elevadas como prédios, só atingem velocidades razoáveis de vento após uma elevada altura. Já nas áreas em que só existem casas e pequenas construções, esta taxa diminui e assim, em alturas um pouco menores já temos ventos satisfatórios; no último caso mostrado, ao nível do mar, se vê que os ventos já são muito mais rápidos em altitudes menos elevadas que nos exemplos anteriores.

A potência teórica gerada pelas "máquinas de vento" varia com o cubo da velocidade do vento local. Isto, mais uma vez evidencia o quanto é necessário uma análise prévia do lugar onde se pretende instalar os equipamentos, para que se tenha um aproveitamento melhor da potencialidade da energia eólica. Assim, a conversão de energia eólica em regiões com muitos obstáculos fica prejudicada. Porém, mesmo nestas regiões é possível o aproveitamento, mesmo que já em escalas menores. O que é preciso saber é se nestas regiões onde há um aproveitamento mais restrito é ainda viável economicamente se construir tais equipamentos para se converter a energia eólica para eletricidade, por exemplo.

Existe uma regra prática que permite a utilização de cata-ventos em regiões que possuem construções e/ou obstáculos naturais, tais como árvores muito grandes ou elevações (morros) no solo. Esta regra diz que o cata-vento nestas regiões tem que ficar a

Figura 4.3 – Diferentes ares e relação entre suas alturas e velocidades de ventos.[12] uma distância mínima de 7 vezes a altura que o obstáculo tem, ou seja, se numa casa de 5 metros de altura, por exemplo, se desejar implantar um sistema de captação e conversão da energia eólica, este sistema deverá estar a uma distância de 35 metros para que haja um aproveitamento melhor dos geradores e que as turbulências causada pela não uniformidade do chão, das construções e dos obstáculos naturais sejam minimizadas, não interferindo muito no aproveitamento do sistema.

4.7) Circulação global do vento

Os ventos aliviam a temperatura atmosférica e as diferenças de pressão causadas pelo aquecimento irregular da superfície da Terra. Enquanto o sol aquece o ar, água e terra de um lado da Terra, o outro lado é resfriado por radiação térmica para o espaço.

Diariamente a rotação da Terra espalha esse ciclo de aquecimento e resfriamento sobre sua superfície. Mas, nem toda superfície da Terra responde ao aquecimento da mesma forma. Por exemplo, um oceano se aquecerá mais lentamente que as terras adjacentes porque a água tem uma capacidade maior de "estocar" calor.

Da diferença dentre as taxas de aquecimento e resfriamento são criadas enormes massas de ar com temperatura, mistura e características de massas de ar oceânicas ou terrestres, ou quentes e frias. A colisão destas duas massas de ar, quente e fria, geram os ventos da Terra. [1]

4.8) Turbina de vento

O engenheiro francês chamado D. G. Darrieus inventou a moderna turbina de vento de eixo vertical, incluindo uma convencional de duas lâminas. Diferente das turbinas convencionais, que são reorientadas de acordo com o vento, esta é unidirecional, isto é, aceita o vento de qualquer direção vinda. Como o seu rotor e suas partes elétricas são na parte inferior da turbina, sua manutenção é muito mais simples, além de permitir uma variabilidade de aplicações elétricas e mecânicas maiores que as demais. Esta engenhosa contribuição que lâminas curvadas são de maior durabilidade que as lâminas verticais.

Como as outras turbinas , esta pode ser aplicada com duas, três ou mais lâminas. A Califórnia já mudou algumas de suas turbinas de duas para três lâminas durante o meio do ano de 1990.

Veja a seguir alguns exemplos de turbinas de eixo vertical e horizontal.

Figura 4.4 - Turbina Savonius de eixo vertical. [12]

Figura 4.5 - Turbina Darrieus de eixo vertical. [12] Figura 4.6 - Turbina Darrieus de eixo vertical e pá reta. [12]

Figura 4.7 - Turbina de eixo horizontal tripá com gerador de 75KW. [12] 4.9) Geradores

A eletricidade é uma forma muito cômoda de se transmitir energia, assim, é importante falarmos um pouco sobre os instrumentos que fazem esta conversão, da energia mecânica - fornecida pelos ventos para a eletricidade, uma forma prática e limpa de se transmitir e usar a energia.

Esta conversão é feita pelos geradores elétricos, que nada mais são do que motores elétricos que ao girarem em torno de seus eixos induzem (pela lei de Faraday) uma corrente elétrica em seus pólos. [9]

Existe uma gama muito grande de tipos e tamanhos de geradores usados hoje em dia. Para dar um exemplo bem conhecido, pode-se citar o alterador dos automóveis, que é um pequeno gerador que converte a energia mecânica rotativa do motor de combustão interna para eletricidade e carrega-a na bateria do automóvel, para ser utilizada em momentos posteriores.

Os geradores podem ser basicamente dos tipos "AC" ou "DC", se converterem a energia para a forma de corrente alternada ou contínua (direta), respectivamente. Nos tipos de geradores de corrente contínua (DC), a energia é convertida, como o nome já indica para a forma direta ou contínua de corrente elétrica e carrega uma bateria que acumula esta energia para uso posterior. Esta forma de conversão é um pouco incômoda, pois requer um banco relativamente grande de baterias para que se possa ter uma quantidade de energia razoável num determinado lugar. Além disto, os utensílios domésticos e a grande parte dos aparelhos elétricos e eletrônicos são projetados para funcionarem ligados a corrente alternada devido as facilidades de transporte que esta maneira proporciona. Assim, nos sistemas em que se usam geradores de corrente contínua, é necessário que se tenha ligado juntamente ao sistema um inversor para que se possa utilizar diretamente aparelhos elétricos. Em compensação, esta forma permite que mesmo sem vento por algum tempo se tenha energia disponível.

Já os geradores de corrente alternada (AC), geram a eletricidade, como o nome diz, na forma de corrente alternada e pode ser usado diretamente nos aparelhos elétricos e eletrônicos do dia a dia.

Existe, porém dois inconvenientes deste tipo de produção de eletricidade: o primeiro é que não se é possível estocar energia na forma de corrente alternada, tendo que retificá-la por meio de diodos, por exemplo, para a forma contínua e armazená-la em bancos de baterias; o segundo inconveniente é que os geradores de corrente alternada geram correntes em freqüências que variam com a velocidade de giro do rotor, e como os ventos variam muito, as freqüências geradas pelo gerador também variam muito.

Para controlar este problema, visto que nosso sistema de energia tem que estar em torno de 60 Hz (Hertz), é preciso ligar ao sistema um dispositivo que mantenha a freqüência em torno dos desejados 60 Hz; este dispositivo é chamado de inversor síncrono. [3]

No sistema de estocagem utilizando baterias, a energia mecânica é convertida para eletricidade na forma de corrente contínua e carrega um banco de baterias. Deste banco, a energia passa por um inversor que a deixa na forma de corrente alternada pronta para ser usada em suas aplicações.

No sistema conectado de energia, a conversão é feita diretamente para corrente alternada e passa por um inversor síncrono para que sua freqüência seja ideal. Após isto, a corrente vai para a caixa de fusíveis e passa por um dispositivo seletor, que verifica se a corrente gerada pelo cata vento é suficiente para suprir as necessidades da casa; se for suficiente o dispositivo não atua, porém se a energia gerada pelo cata vento não for suficiente, este dispositivo seletor começa a "aceitar" também a energia fornecida pelo sistema de eletrificação das ruas. Desta maneira, o usuário deste sistema só usa a energia vinda da rua em situações em que o vento não é ideal ou quando sua demanda supera a energia gerada por seu equipamento.

4.10) Rotor Eólico

O rotor é o componente do sistema eólico responsável por captar a energia cinética dos ventos e transformá-la em energia mecânica de rotação. É o componente mais característico de um sistema eólico. Por este motivo, a configuração do rotor influenciará diretamente no rendimento global do sistema.

Os rotores eólicos podem ser classificados segundo vários critérios e o mais importante é aquele que utiliza a orientação do eixo como fator de classificação. Assim, temse os rotores de eixo horizontal e os rotores de eixo vertical.

4.10.1) Rotores de Eixo Horizontal

Os rotores de eixo horizontal são os mais comuns e grande parte da experiência mundial está voltada para a sua utilização. São movidos por forças aerodinâmicas chamadas de forças de sustentação (lift) e forças de arrasto (drag). Um corpo que obstrui o movimento do vento sofre a ação de forças que atuam perpendicularmente ao escoamento (forças de sustentação) e de forças que atuam na direção do escoamento (forças de arrasto). Ambas são proporcionais ao quadrado da velocidade relativa do vento. Adicionalmente, as forças de sustentação dependem da geometria do corpo e do ângulo de ataque (formado entre a velocidade relativa do vento e o eixo do corpo).

Os rotores que giram predominantemente sob o efeito de forças de sustentação permitem liberar muito mais potência do que aqueles que giram sob efeito de forças de arrasto, para uma mesma velocidade de vento.Os rotores de eixo horizontal ao longo do vento (aerogeradores convencionais) são predominantemente movidos por forças de sustentação e devem possuir mecanismos capazes de permitir que o disco varrido pelas pás esteja sempre em posição perpendicular ao vento. Tais rotores podem ser constituídos de uma pá e contrapeso, duas pás, três pás ou múltiplas pás (multivane fans).

Construtivamente, as pás podem ter as mais variadas formas e empregar os mais variados materiais. Em geral, utilizam-se pás rígidas de madeira, alumínio ou fibra de vidro reforçada.

Quanto à posição do rotor em relação à torre, o disco varrido pelas pás pode estar a jusante do vento (down wind) ou a montante do vento (up wind). No primeiro caso, a "sombra" da torre provoca vibrações nas pás. No segundo caso, a "sombra" das pás provoca esforços vibratórios na torre. Sistemas a montante do vento necessitam de mecanismos de orientação do rotor com o fluxo de vento, enquanto nos sistemas a jusante do vento, a orientação realiza-se automaticamente.

Os rotores mais utilizados para geração de energia elétrica são os de eixo horizontal do tipo hélice, normalmente compostos de 3 pás ou em alguns casos (velocidades médias muito altas e possibilidade de geração de maior ruído acústico) 1 ou 2 pás.

4.10.2) Rotores de Eixo Vertical

Em geral, os rotores de eixo vertical têm a vantagem de não necessitarem de mecanismos de acompanhamento para variações da direção do vento, o que reduz a complexidade do projeto e os esforços devidos as forças de Coriolis.Os rotores de eixo vertical também podem ser movidos por forças de sustentação (lift) e por forças de arrasto (drag). Os principais tipos de rotores de eixo vertical são Darrieus, Savonius e turbinas com torre de vórtices.

Os rotores do tipo Darrieus são movidos por forças de sustentação e constituem-se de lâminas curvas (duas ou três) de perfil aerodinâmico, atadas pelas duas pontas ao eixo vertical.

4.1) Transmissão e Caixa Multiplicadora

A transmissão, que engloba a caixa multiplicadora, possui a finalidade de transmitir a energia mecânica entregue pelo eixo do rotor até o gerador. É composta por eixos, mancais, engrenagens de transmissão e acoplamentos.

O projeto tradicional de uma turbina eólica consiste em colocar a caixa de transmissão mecânica entre o rotor e o gerador de forma a adaptar a baixa velocidade do rotor à velocidade de rotação mais elevada dos geradores convencionais.

A velocidade angular dos rotores geralmente varia na faixa de 20 a 150 RPM, devido às restrições de velocidade na ponta da pá (tip speed). Entretanto, geradores (sobretudo geradores síncronos) trabalham a rotações muito mais elevadas (em geral, entre 1200 a 1800 RPM), tornando necessário a instalação de um sistema de multiplicação entre os eixos. [2]

Mais recentemente, alguns fabricantes desenvolveram com sucesso aerogeradores sem a caixa multiplicadora e abandonaram a forma tradicional de construir turbinas eólicas. Assim, ao invés de utilizar a caixa de engrenagens com alta relação de transmissão, necessária para alcançar a elevada rotação dos geradores, utiliza-se geradores múltiplos de baixa velocidade e grandes dimensões.

4.12) Mecanismos de Controle

Os mecanismos de controle destinam-se à orientação do rotor, ao controle de velocidade, ao controle de carga, etc. Pela variedade de controles, existe uma enorme variedade de mecanismos que podem ser mecânicos (velocidade, passo, freio), aerodinâmicos (posicionamento do rotor) ou eletrônicos (controle da carga).

Devido a atuação das forças aerodinâmicas nas pás do rotor, uma turbina eólica converte a energia cinética do vento em energia mecânica rotacional. Estas forças aerodinâmicas são geradas ao longo das pás do rotor que necessitam de perfis especialmente projetados e que são muito similares àqueles usados para asas de aviões.

Com a velocidade do fluxo de ar aumentando, as forças de sustentação aerodinâmica aumentam com a segunda potência e a energia extraída da turbina com a terceira potência da velocidade do vento, uma situação que necessita de um controle de potência do rotor muito efetivo e rápido de modo a evitar sobrecarregamento elétrico e mecânico no sistema de transmissão.

Os modernos aerogeradores utilizam dois diferentes princípios de controle aerodinâmico para limitar a extração de potência à potência nominal do aerogerador. São chamados de controle estol (stall) e controle de passo (pitch). No passado, a maioria dos aerogeradores usavam o controle estol simples; atualmente, entretanto, com o aumento do tamanho das máquinas, os fabricantes estão optando pelo sistema de controle de passo que oferece maior flexibilidade na operação das turbinas eólicas.

4.13) Controle de Passo

O controle de passo é um sistema ativo que normalmente necessita de uma informação vinda do controlador do sistema. Sempre que a potência nominal do gerador é ultrapassada, devido à um aumento da velocidade do vento, as pás do rotor giram em torno do seu eixo longitudinal; em outras palavras, as pás mudam o seu ângulo de passo para reduzir o ângulo de ataque. Esta redução do ângulo de ataque diminui as forças aerodinâmicas atuantes e, conseqüentemente, a extração de potência. Para todas as velocidades do vento superiores à velocidade nominal, o ângulo é escolhido de forma que a turbina produza apenas a potência nominal. Sob todas as condições de vento, o escoamento em torno dos perfis das pás do rotor é bastante aderente à superfície produzindo sustentação aerodinâmica e pequenas forças de arrasto. [13]

(Parte 4 de 5)

Comentários