Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Apostila Tubulações Industriais, Notas de estudo de Engenharia de Alimentos

Apostila, sobre instalações industriais, como Válvulas, tubulações etc.

Tipologia: Notas de estudo

Antes de 2010
Em oferta
40 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 14/04/2007

herbert-melo-8
herbert-melo-8 🇧🇷

4.3

(3)

5 documentos

Pré-visualização parcial do texto

Baixe Apostila Tubulações Industriais e outras Notas de estudo em PDF para Engenharia de Alimentos, somente na Docsity! TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 1 FACULDADE DE ENGENHARIA QUÍMICA DE LORENA CURSO DE TUBULAÇÕES INDUSTRIAIS Prof. Antonio Clélio Ribeiro Livro Texto: TUBULAÇÕES INDUSTRIAIS Volumes 1 e 2 SILVA TELLES, Pedro Carlos Livros Técnicos e Científicos Editora S.A. Livro Auxiliar: TABELAS E GRÁFICOS PARA PROJETO DE TUBULAÇÕES SILVA TELLES, Pedro Carlos e BARROS, Darcy G. de Paula Editora Interciência Ltda. TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 2 APRESENTAÇÃO O material deste curso, organizado em dez módulos denominados de Aula 1 até Aula 10, contém às transparências que são utilizadas em cada aula e correspondem aos resumos dos respectivos capítulos do Livro Texto. Na organização de cada módulo (aula) do curso, além do Livro Texto, foram utilizadas tabelas e gráficos do livro auxiliar, bem como, figuras e dados de diversos catálogos de fabricantes de tubos, conexões, juntas de expansão, válvulas, purgadores etc.. Para garantir um bom aproveitamento no curso, o estudante deve utilizar os resumos das transparências juntamente com o Livro Texto. Somente através do Livro Texto é que se conseguirá o pleno entendimento dos resumos apresentados neste material. Prof. Clélio RELAÇÃO DE CATÁLOGOS UTILIZADOS: • Catálogo Geral da BÁRBARA • S. A. Tubos Brasilit • Conexões TUPY • PBA/PBS/F TIGRE • Catálogo Geral da NIAGARA • Catálogo de Produtos da ASCA • Válvulas Industriais DECA • BROWM Válvulas e Conexões • Catálogo Geral da RVM • Válvulas de Diafragma CIVA-SAUNDERS • Válvulas de Borboleta CBV-DEMCO TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 5 TUBULAÇÕES INDUSTRIAIS Definição: Conjunto de tubos e seus acessórios Aplicações: Distribuição de vapor para força e/ou para aquecimento; Distribuição de água potável ou de processos industriais; Distribuição de óleos combustíveis ou lubrificantes; Distribuição de ar comprimido; Distribuição de gases e/ou líquidos industriais. Custo: Em indústrias de processamento, indústrias químicas, refinarias de petróleo, indústrias petroquímicas, boa parte das indústrias alimentícias e farmacêuticas, o custo das tubulações pode representar 70% do custo dos equipamentos ou 25% do custo total da instalação. CLASSIFICAÇÃO DAS TUBULAÇÕES Tubulações dentro de instalações industriais Tubulações fora de instalações industriais Tubulações de processo Tubulações de utilidades Tubulações de instrumentação Tubulações de drenagem Tubulações de transporte Tubulações de distribuição TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 6 PROCESSOS DE FABRICAÇÃO DE TUBOS Laminação Dia. Grandes TUBOS SEM COSTURA Extrusão Dia. Pequenos Fundição TUBOS COM COSTURA Fabricação por solda A QUALIDADE DO TUBO INDEPENDE DO PROCESSO DE FABRICAÇÃO FABRICAÇÃO POR LAMINAÇÃO Laminador Oblíquo (Mannesmann) Laminadores de Acabamento TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 7 FABRICAÇÃO POR EXTRUSÃO Ferro Fundido (Nodular) Aços especiais não forjáveis FABRICAÇÃO POR FUNDIÇÃO Concreto Cimento-amianto Barro-vidrado FABRICAÇÃO DE TUBOS COM COSTURA TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 10 OBSERVAÇÕES SOBRE A SELEÇÃO DE MATERIAIS Para a solução do problema da escolha dos materiais, a experiência é indispensável e insubstituível ou seja, material para ser bom já deve ter sido usado por alguém anteriormente. Seguir a experiência é a solução mais segura, embora nem sempre conduza à solução mais econômica. Resumindo, pode-se indicar a seguinte rotina para seleção de materiais: 1 – Conhecer os materiais disponíveis na prática e suas limitações físicas e de fabricação. 2 – Selecionar o grupo mais adequado para o caso tendo em vista as condições de trabalho, corrosão, nível de tensão etc. 3 – Comparar economicamente os diversos materiais selecionados, levando em conta todos os fatores de custo. COMPARAÇÃO DE CUSTOS DE MATERIAIS A comparação de custos deve ser feita comparando a relação custo/resistência mecânica ou seja, a comparação deve ser feita entre preços corrigidos que serão os preços por kg multiplicado pelo peso específico e dividido pela tensão admissível de cada material. Na comparação de custos dos materiais devem ainda ser levados em consideração os seguintes pontos: - Resistência à corrosão ( sobreespessura de sacrifício ). - Maior ou menor dificuldade de solda - Maior ou menor facilidade de conformação e de trabalho - Necessidade ou não de alívio de tensões. CUSTO RELATIVO DOS MATERIAIS Materiais Custo Relativo Materiais Custo Relativo Aço-carbono estrutural 1,00 Ferro fundido 0,95 Aço-carbono qualificado 1,15 Alumínio 2,5 Aço-liga 1,25Cr – 0,5 Mo 3,1 Latão de alumínio 7,6 Aço inoxidável tipo 304 11,5 Metal Monel 31,8 Aço inoxidável tipo 316 15,0 Titânio 41,0 TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 11 TUBOS DE AÇO-CARBONO ( Chamados de uso geral) BAIXO CUSTO REPRESENTA EXCELENTES QUALIDADES MECÂNICAS 90% DOS TUBOS FÁCIL DE SOLDAR E DE CONFORMAR DAS INDUSTRIAS UTILIZADO PARA: Água doce, vapor, condensado, ar comprimido, óleo, gases e muitos outros fluidos pouco corrosivos. 450ºC para serviço severo 480ºC para serviço não severo LIMITES DE TRABALHO 520ºC máximo em picos PELA TEMPERATURA 370ºC começa deformação por fluência 530ºC oxidação intensa (escamação) -45ºC torna-se quebradiço EXITEM ACOS-CARBONO ESPECIAIS PARA BAIXAS TEMPERATURAS COM MENOS CARBONO E MAIS MANGANÊS PARA TEMPERATURAS ABAIXO DE 0ºC E ACIMA DE 400ºC É RECOMENDADO A UTILIZAÇÃO DE AÇO-CARBONO ACALMADO ( 1% de Si) O AÇO-CARBONO EXPOSTO À ATMOSFERA SOFRE CORROSÃO UNIFORME (ferrugem) E O CONTATO DIRETO COM O SOLO CAUSA CORROSÃO ALVEOLAR PENETRANTE. DE UM MODO GERAL O AÇO-CARBONO APRESENTA BAIXA RESISTÊNCIA À CORROSÃO (utiliza-se com revestimento ou joga-se com sobreespessura). OS RESÍDUOS DE CORROSÃO DO AÇO-CARBONO NÃO SÃO TÓXICOS MAS PODEM AFETAR A COR E O GOSTO DO FLUIDO CONDUZIDO. O AÇO-CARBONO É VIOLENTAMENTE ATACADO PELOS ÁCIDOS MINERAIS, PRINCIPALMENTE QUANDO DILUIDOS OU QUENTES E SUPORTA RAZOAVELMENTE O SERVIÇO COM ÁLCALIS. OS TUBOS DE AÇO-CARBONO SÃO COMERCIALIZADOS SEM TRATAMENTO (TUBO PRETO) OU PROTEGIDOS COM REVESTIMENTO DE ZINCO DEPOSITADO A QUENTE (TUBO GALVANIZADO). TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 12 TUBOS DE ACOS-LIGA E AÇOS INOXIDÁVEIS OS TUBOS DE AÇOS-LIGA OU DE AÇOS INOXIDÁVEIS SÃO BEM MAIS CAROS QUE OS AÇOS-CARBONO, ALÉM DO QUE A SOLDAGEM, CONFORMAÇÃO E MONTAGEM TAMBÉM SÃO MAIS DIFÍCEIS E MAIS CARAS. Altas temperaturas Baixas temperaturas CASOS GERAIS DE EMPREGO Alta corrosão Necessidade de não contaminação Segurança DEFINIÇÕES: Aços-liga são todos os outros aços que contêm outros elementos, além dos que compõem os aços-carbono. Melhora resistência a fluência Aços-liga, para tubulações, destaca Mo p/ altas temperaturas duas classes importantes Mo+Cr Melhora resistência a oxidação Ni p/ baixas temperaturas Aços inoxidáveis são os que contêm pelo menos 12% de Cr que lhes conferem a propriedade de não se enferrujarem mesmo em exposição prolongada em uma atmosfera normal. Corrosão intergranular pela precipitação de carboneto AUSTENÍTICO de Cr – Sensitização (T>450) (não magnéticos) Corrosão alveolar provocada Pelo ion cloro (Cloretos,Hipo Aços inoxidáveis podem ser cloreto etc.) FERRÍTICO (magnético) TIPOS ESTRUTURA ELEMENTOS DE LIGA (%) LIMITES DE T (ºC) DENOMINAÇÃO DO AISI METALURGICA Cr Ni OUTROS Máxima Mínima 304 Austenítica 18 8 600 -255 304 L Austenítica 18 8 C (max.): 0,03 400 sem limite 310 Austenítica 25 20 600 -195 316 Austenítica 16 10 Mo: 2 650 -195 321 Austenítica 17 9 Ti: 0,5 600 -195 405 Ferrítica 12 - Al:0,2 470 zero TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 15 DIMENSIONAMENTO DO DIÂMETRO DA TUBULAÇÃO NA MAIORIA DOS CASOS É UM PROBLEMA HIDRÁULICO EM FUNÇÃO: Da vazão necessária de fluido Das diferenças de cotas existentes Das pressões disponíveis Das velocidades e perdas de carga admissíveis Da natureza do fluido Do material e tipo da tubulação EXCEÇÕES Diâmetro do bocal do equipamento (TUBOS CURTOS) Vão entre os suportes (VAZÕES PEQUENAS) O CÁLCULO É FEITO POR APROXIMAÇÕES SUCESSIVAS CÁLCULO DO DIÂMETRO Função das velocidades de escoamento ou Das perdas de carga TABELA DE VELOCIDADES ECONÔMICAS – ANEXO 3/AULA1 É PRECISO EVITAR VELOCIDADES ALTAS PORQUE PODE CAUSAR VIBRAÇÕES NA TUBULAÇÃO GRANDEZAS CONHECIDAS (Cálculo da perda de carga) Vazão Cota e pressão dos pontos extremos Natureza do líquido ( vP,,υγ ) Comprimento equivalente 1. QUANTO MAIOR A PERDA DE CARGA MAIOR A ENERGIA PERDIDA 2. PARA DIMINUIR A PERDA DE CARGA É PRECISO AUMENTAR O DIÂMETRO 3. RESULTA EM UM PROBLEMA ECONÔMICO TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 16 CALCULADO O DIÂMETRO EM FUNÇÃO DO ESCOAMENTO É PRECISO ADEQUAR O VALOR ENCONTRADO COM AS DIMENSÕES NORMALIZADAS PARA FABRICAÇÃO DE TUBOS. CÁLCULO DA ESPESSURA DA PAREDE DO TUBO ( Em função da pressão interna) hS PD t 21 = ; Onde t1 = Espessura da parede P = Pressão interna D = Diâmetro externo Sh = Tensão admissível do material na temperatura de projeto SÓ PODE SER UTILIZADA SE O DIÂMETRO EXTERNO FOR MAIOR QUE 6 (seis) VEZES A ESPESSURA DA PAREDE CÁLCULO DA ESPESSURA DE PAREDE (Norma ANSI/ASME. B.31) ( ) C PYES PDt h + + = 2 , ou ( ) C PPYES Pdt h + −+ = 2 Onde: P = pressão interna de projeto. D = diâmetro externo; d = diâmetro interno Sh= tensão admissível do material na temperatura de projeto. E = coeficiente de eficiência de solda: E=1 Para tubos sem costura e tubos com costura por solda de topo, totalmente radiografa. E=0,9 Para tubos com costura por solda de topo, radiografia parcial E=0,85 Idem, sem radiografia, solda pelos dois lados. E=0,8 Idem, Idem, solda por um só lado. Y = coeficiente de redução de acordo com o material e a temperatura. Y=0,4 Para tubos de aço carbono e outros aços ferríticos, em temperaturas de até 485 °C. Y=0 Para tubos de ferro fundido. C = soma das sobreespessura para corrosão, erosão e abertura de roscas. AS FÓRMULAS NÃO PODEM SER APLICADAS QUANDO P/SE > 0,385 E TAMBÉM QUANDO t > D/6 A SOBREESPESSURA PARA CORROSÃO E EROSÃO SERÁ O PRODUTO DA TAXA ANUAL DE CORROSÃO PELO NÚMERO DE ANOS DA VIDA ÚTIL; PARA TUBULAÇÕES EM GERAL, TOMA-SE DE 10 A 15 ANOS DE VIDA ÚTIL. NA FALTA DE DADOS, PARA O AÇO CARBONO E AÇOS DE BAIXA LIGA, CONSIDERA-SE: 1. 1,2 mm como valor mínimo para a sobreespessura de corrosão 2. 2,0 mm em serviços de média corrosão 3. até 4,0 mm em serviços de alta corrosão TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 17 DEFINIÇÃO DE UM TUBO (Especificação para Compra) DIÂMETRO NOMINAL NÚMERO DE SÉRIE TIPO DE EXTREMIDADE Ponta lisa Ponta chanfrada (especificada) Ponta rosqueada (especificada) PROCESSO DE FABRICAÇÃO (com ou sem costura) ESPECIFICAÇÃO DO MATERIAL TIPO DE ACABAMENTO OU DE REVESTIMENTO QUANTIDADE Normalmente indica-se a quantidade total em unidade de comprimento ou em peso. A indicação do comprimento da vara de tubo não é importante porque pode haver variação, em função do processo de fabricação TUBOS DE FERRO FUNDIDO SÃO USADOS PARA ÁGUA, GÁS, ÁGUA SALGADA E ESGOTOS, EM SERVIÇOS DE BAIXA PRESSÃO , TEMPERATURA AMBIENTE E SEM GRANDES ESFORÇOS MECÂNICOS. ÓTIMA RESISTÊNCIA À CORROSÃO DO SOLO OS TUBOS DE MELHOR QUALIDADE SÃO FABRICADOS EM MOLDES CENTRIFUGADOS SÃO PADRONIZADOS PELO DIÂMETRO EXTERNO DE 2” A 48” COM AS Lisa EXTREMIDADES Flange Integral Ponta e Bolsa SEGUEM AS NORMAS EB-43 e P-EB-137 DA ABNT E SÃO TESTADOS PARA PRESSÕES DE ATÉ 3 MPa ( ≅ 30 Kgf/cm2) FERRO FUNDIDO NODULAR Adição de Si, Cr ou Ni Aumenta a resistência mecânica. TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 20 TUBOS NÃO-METÁLICOS PLÁSTICOS (GRUPO MAIS IMPORTANTE) A UTILIZAÇÃO DE TUBOS DE PLÁSTICO TEM CRESCIDO NOS ÚLTIMOS ANOS, PRINCIPALMENTE COMO SUBSTITUTOS PARA OS AÇOS INOXIDÁVEIS Pouco peso Alta resistência à corrosão VANTAGENS Coeficiente de atrito muito baixo Facilidade de fabricação e manuseio Baixa condutividade térmica e elétrica Cor própria e permanente Baixa resistência ao calor Baixa resistência mecânica DESVANTAGENS Pouca estabilidade dimensional Insegurança nas informações técnicas Alto coeficiente de dilatação Alguns plásticos podem ser combustíveis TERMOPLÁSTICOS Polímeros de cadeia reta (para dia. pequenos) (Podem ser moldados pelo calor) PLÁSTICOS TERMOESTÁVEIS Polímeros de cadeia ramificada (Termofixos) (Não podem ser moldados) (para dia. Grandes) PLÁSTICO AÇO CARBONO RESISTEM AOS ACÍDOS E ÁLCALIS DILUIDOS NÃO RESISTEM AOS ÁCIDOS E ÁLCALIS CONCENTRADOS NÃORESISTEM AOS ACÍDOS E ÁLCALIS DILUIDOS RESISTEM AOS ÁCIDOS E ÁLCALIS CONCENTRADOS QUASE TODOS OS PLÁSTICOS SOFREM UM PROCESSO DE DECOMPOSIÇÃO LENTA QUANDO EXPOSTOS POR MUITO TEMPO À LUZ SOLAR ( Ação dos raios U.V.) TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 21 CIMENTO-AMIANTO - (ARGAMASSA DE CIMENTO E AREIA COM ARMAÇÃO DE FIBRAS DE AMIANTO) CONCRETO ARMADO BARRO VIDRADO (MANILHAS) VIDRO, CERÂMICA BORRACHAS (MANGEIRAS E MANGOTES) TUBOS DE AÇO COM REVESTIMENTO INTERNO - Revestimento anticorrosivo, ou para evitar a contaminação do fluido conduzido FINALIDADES - Revestimento anti-abrasivos e anti-erosivos - Revestimentos refratários (isolamento térmico interno) - Custos RAZÕES - Resistência Mecânica - Possibilidade de Fabricação PRINCIPAIS DIFICULDADES: MONTAGEM E SOLDAGEM AULA 1 Referente aos Capítulos 1 e 2 do Livro Texto TUBULAÇÕES INDUSTRIAS AULA 1 Prof. Clélio 22 ANEXO 1 – Livro de Tabelas (pág. 18) Folha 1 de 2
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved