Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Apostila de Eletrotecnica, Notas de estudo de Eletromecânica

Apostila de Eletrotécnica

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 16/06/2009

aline-ss-11
aline-ss-11 🇧🇷

4.8

(59)

33 documentos

Pré-visualização parcial do texto

Baixe Apostila de Eletrotecnica e outras Notas de estudo em PDF para Eletromecânica, somente na Docsity! ETEP FACULDADES Aluno: Turma: Profº Luciano das Neves TO Eletrotécnica — Luciano das Neves ETEP FACULDADES 5 Eletrotécnica – Luciano das Neves O sentido definido para a f.e.m. induzida no condutor é feito através da regra de Fleming ou regra da mão esquerda. 2.1. Lei de Faraday da Tensão Induzida O valor da tensão induzida depende do número de condutores ou espiras de uma bobina e da velocidade com que estes condutores interceptam as linhas de força ou o fluxo magnético (). Tanto o condutor quanto o fluxo podem se deslocar. A equação para se calcular o valor da tensão induzida é: 𝑓. 𝑒. 𝑚 = 𝐵 . 𝑣 . 𝑛. 𝑠𝑒𝑛 ∝ Onde: f.e.m =Força Eletromotriz - Tensão induzida [V] n = Número de espiras ou condutores v = Velocidade com o fluxo intercepta o condutor [Wb/s] B= campo magnético 6 Eletrotécnica – Luciano das Neves 2.2. Lei de Lenz A polaridade da tensão induzida é determinada através da lei de Lenz. A tensão induzida tem polaridade tal que se opõe a variação do fluxo que produz a indução. Quando surge uma corrente produzida por uma tensão induzida, esta corrente cria um campo magnético em torno do condutor de tal modo que esse campo magnético interage com o campo magnético que o gerou. Se o campo externo aumentar, o campo magnético no condutor provocado pela corrente induzida será no sentido oposto. Se o campo externo diminuir, o campo magnético do condutor será no mesmo sentido, mantendo assim o campo externo. 3. Geração de Tensão Alternada Uma tensão CA é aquela cujo módulo varia continuamente e cuja polaridade é invertida periodicamente. O eixo zero é uma linha horizontal que passa pelo centro. As variações verticais na onda de tensão mostram as variações do módulo. As tensões acima do eixo horizontal têm polaridade positiva (+), enquanto as tensões abaixo do eixo horizontal têm polaridade negativa (-). Uma tensão CA pode ser produzida por um gerador chamado de alternador. Um alternador elementar é apresentado na figura abaixo: 7 Eletrotécnica – Luciano das Neves A espira condutora gira presa a um eixo central dentro do campo magnético produzido pelo fluxo que se desloca do pólo norte do imã para o pólo sul. Isto acontece segundo a Lei de Lenz onde a corrente induzida no condutor cria um campo magnético que tende a se opor ao campo magnético que o gerou. Este campo magnético por sua vez, empurra para fora este campo magnético gerado pela corrente induzida. Presa ao eixo central, a espira permanece girando com uma velocidade angular  invertendo o sentido da corrente induzida quando sua posição é perpendicular ao campo magnético do imã. Podemos ainda analisar a espira em cada quarto volta durante um ciclo completo. Na posição A, a espira gira paralelamente ao fluxo magnético e conseqüentemente não intercepta nenhuma linha de força. A tensão induzida é igual a zero. Na posição superior B, a espira intercepta o campo num ângulo de 90°, produzindo uma tensão máxima. Quando ela atinge C, o condutor está se deslocando novamente em paralelo ao campo e não pode interceptar o fluxo. Em D, a espira intercepta o fluxo novamente gerando uma tensão máxima, porém o fluxo é interceptado no sentido oposto invertendo o sentido da corrente induzida no condutor e assim a polaridade de D é negativa. A espira completa o quarto de volta do ciclo até retornar ao ponto A. O ciclo de valores de tensão se repete nas posições A’B’C’D’A’’ a 10 Eletrotécnica – Luciano das Neves  Se o sinal comparado encontra-se adiantado em relação ao sinal referência, seu fasor terá um ângulo  entre 0° e 180° medido no sentido anti-horário.  Se o sinal comparado encontra-se atrasado em relação ao sinal referência, seu fasor terá um ângulo  entre 0° e 180° medido no sentido horário. Observe os exemplos: 3.3. Valores característicos de tensão e corrente CA Como uma onda senoidal CA de tensão ou de corrente possui diversos valores instantâneos ao longo do ciclo, é conveniente especificar os módulos para efeito de comparação de dois sinais em CA. Podem ser especificados os valores de pico, médio e eficaz (RMS – Root Mean Square). O valor de pico é o valor máximo atingido pelo sinal CA em exatos 90° após cruzar o eixo de referência do sinal CA. O valor médio é a média aritmética sobre todos os valores instantâneos do sinal CA em um semi-ciclo já que analisando todo o ciclo esse valor seria zero. O valor eficaz corresponde a aproximadamente 70,7% do valor de pico. 11 Eletrotécnica – Luciano das Neves Tabela de conversão para corrente e tensão senoidal CA. Multiplique o valor de por Para obter o valor de Pico 2 Pico-a-pico Pico-a-pico 0,5 Pico Pico 0,637 Médio Médio 1,570 Pico Pico 0,707 RMS (eficaz) RMS (eficaz) 1,414 Pico Médio 1,110 RMS (eficaz) RMS (eficaz) 0,901 Médio Exercícios 1) A tensão de pico de uma onda seno CA é de 100V. Calcule a tensão instantânea em 0°, 30°, 60°, 90°, 135° e 245°. Faça um gráfico destes pontos e desenhe a onda seno resultante para a tensão. 2) Se uma onda de tensão CA tem um valor instantâneo de 90V em 30°, calcule o valor de pico. 3) Calcule V, VPP, T e f para a onda seno da tensão abaixo: 4) Qual a tensão de pico-a-pico e freqüência de uma forma de onda retangular não simétrica conforme os dados abaixo: 12 Eletrotécnica – Luciano das Neves 5) Calcule. a) a tensão instantânea em 45° de uma onda cujo valor de pico é de 175V, b) o valor de pico de uma onda CA se a corrente instantânea for de 35A em 30°. 6) Qual o período de uma tensão CA que têm uma freqüência de a) 50Hz, b)95kHz e c) 106MHz. 7) Determine o ângulo de fase para cada sinal CA representado nas figuras abaixo. Represente os sinais através de diagramas de fasores tomando como referência a corrente “i” em cada uma das figuras 15 Eletrotécnica – Luciano das Neves 4. Geração Trifásica em CA Os alternadores trifásicos são geralmente encontrados nas usinas de geração de energia onde predominantemente no Brasil estas usinas são hidrelétricas. Nestas usinas, geralmente construídas nos desníveis dos rios, a água é represada e através de grandes tubulações são captadas criando uma queda de nível. Aproveita-se a energia cinética da água no interior da tubulação para movimentar grandes turbinas que através de suas pás, transmitem o movimento ao eixo do gerador variando o campo magnético dentro da máquina. Este processo é denominado conversão eletromecânica de energia. No estator estão alojados três grupos independentes de bobinas, montadas defasadas em 120° entre si. Neste caso, um eletroímã é montado junto ao rotor do gerador. Não muito comum podemos ter as bobinas montadas no eixo e o eletroímã montado no estator, porém neste caso se torna complicada a coleta da tensão que só poderá ser feita através de anéis. Os enrolamentos são ligados de tal maneira que podemos ter três ou quatro pontos de ligação para os consumidores. Em geral, cada grupo independente de bobinas tem duas bobinas separadas, para permitir que, com o fechamento das ligações externas, se obtenha valores diferentes de tensão, como veremos adiante. O tipo de fechamento normalmente utilizado é o “estrela com neutro acessível”, onde existe um ponto de ligação para cada fase mais um ponto denominado “neutro”, que é constituído pelo fechamento das extremidades das bobinas. A tensão entre os três pontos terminais de cada fase é sempre a mesma, que deve corresponder ao tipo de fechamento escolhido. A tensão medida entre cada fase e o neutro é menor, sendo, numericamente, igual ao valor da tensão entre fases dividida pela raiz quadrada de 3. O neutro é para ser ligado ao aterramento da instalação elétrica local. 16 Eletrotécnica – Luciano das Neves 4.1. Excitação e controle da tensão gerada Como visto anteriormente, para induzir a força eletromotriz necessitamos de um circuito magnético – o campo do alternador. Em máquinas de pequeno porte, podemos formar o campo por meio de ímãs permanentes naturais, mas, normalmente, isto é feito por meios eletromagnéticos ao alimentar as bobinas que constituem os pólos com corrente contínua. Isto se denomina excitar a máquina por meio de uma fonte de corrente contínua denominada excitatriz. Para manter constante a tensão de saída do alternador, é necessário regular o sistema de excitação, pois é a intensidade do campo magnético quem determina este valor. Portanto, necessitamos de um regulador de tensão, que é o elemento capaz de “sentir” as variações de tensão de saída do alternador e atuar diretamente na excitatriz para que esta aumente ou diminua o fluxo de corrente no campo magnético, mantendo constante a tensão para qualquer solicitação de carga. Quanto à forma construtiva, duas são as configurações básicas para o sistema de excitação do alternador; excitação dinâmica e excitação estática. O primeiro, denominado excitação dinâmica, é montado no próprio eixo do alternador. O segundo, denominado excitação estática, é constituído por um retificador de corrente que utiliza a própria energia gerada pelo alternador para alimentar o campo com corrente retificada. Um circuito eletrônico acoplado ao retificador faz a função de regulador de tensão, abrindo ou fechando o “gate” de um tiristor. 4.1.1. Excitação estática No sistema de excitação estática, a corrente que alimenta o campo do alternador é retificada e controlada por uma excitatriz eletrônica. A condução da corrente se faz por meio de um par de anéis com escovas montado no eixo do alternador. Como utiliza a tensão gerada pelo alternador, necessita de um mínimo de tensão inicial, gerada pelo magnetismo remanente do alternador durante a partida, para iniciar o processo de retificação e alimentação do campo. Este processo de início de geração é denominado escorva do alternador. 17 Eletrotécnica – Luciano das Neves O sistema de excitação estática tem resposta de regulação mais rápida do que o sistema de excitação dinâmica, uma vez que o regulador atua diretamente no campo do alternador, o que lhe proporciona maior capacidade de partir motores elétricos de indução. Entretanto, como o fluxo de corrente é controlado por pulsos dos tiristores, introduz deformações na forma de onda da tensão gerada, o que o torna contra-indicado para alternadores que alimentam equipamentos sensíveis. 4.1.2. Excitação Brushless No sistema de excitação dinâmica sem escovas utiliza-se um gerador de corrente contínua, montado no próprio eixo do alternador. O campo deste gerador é alimentado por um regulador externo que, modernamente, é eletrônico semelhante ao empregado na excitação estática. Nos alternadores antigos este gerador de corrente contínua era um dínamo, com escovas e coletor de lâminas de cobre. Atualmente utiliza-se um pequeno alternador de pólos fixos, cuja corrente alternada gerada no induzido rotativo é retificada por uma ponte retificadora de onda completa, também girante, que transfere a corrente retificada diretamente ao campo do alternador, sem a necessidade de escovas. Este sistema é denominado “Brushless” e é largamente utilizado. 4.1.3. Excitação por Imã Permanente Sistema de excitação por magneto (ou imã) permanente, também conhecido por excitação PMG, abreviatura da denominação em inglês de Permanent Magnet Generator. Trata-se de um sistema de excitação onde uma excitatriz auxiliar, constituída por um campo magnético constante produzido por uma peça magnetizada antes da montagem, a qual funciona como indutor girando no interior de um enrolamento fixo, este trabalhando como induzido. Esquematicamente, tal sistema pode-se representar da seguinte forma: 20 Eletrotécnica – Luciano das Neves 5.1. Potência em cargas trifásicas equilibradas Uma carga equilibrada possui a mesma impedância quando conectada a cada um dos enrolamentos num sistema trifásico. Em cada ligação as linhas A, B e C formam um sistema trifásico de tensão. O ponto neutro N da ligação em Y é o quarto condutor do sistema trifásico de quatro fios. Numa carga ligada em  equilibrada, bem como nos enrolamentos de um transformador, a tensão de linha VL e a tensão de fase VF ou do enrolamento são iguais, e a corrente de linha IL é √3 vezes maior que a corrente de fase IF. 𝑉𝐿 = 𝑉𝐹 𝐼𝐿 = 3 ∙ 𝐼𝐹 21 Eletrotécnica – Luciano das Neves Para uma carga equilibrada ligada em Y, a corrente de linha IL e a corrente de fase IF são iguais, a corrente de neutro IN é zero e a tensão de linha VL é √3 vezes maior do que a tensão de fase VF. 𝐼𝐿 = 𝐼𝐹 𝐼𝑁 = 0 𝑉𝐿 = 3 ∙ 𝑉𝐹 Como a impedância de fase de cargas Y ou  equilibradas tem correntes iguais, a potência de uma fase é um terço da potência total. A potência de fase é: 𝑃𝐹 = 𝑉𝐹 ∙ 𝐼𝐹 ∙ cos 𝜃 E a potência total é: 𝑃𝑇 = 3 ∙ 𝑉𝐹 ∙ 𝐼𝐹 ∙ cos 𝜃 Como na relação entre tensões e correntes de fase e linha nas conexões Y e  são complementares, podemos ainda re-escrever as fórmulas utilizando as tensões e correntes de linha. 𝑃𝑇 = 3 ∙ 𝑉𝐿 ∙ 𝐼𝐿 ∙ cos 𝜃 A potência total aparente ST [VA] e a potência total reativa QT [Var], estão relacionadas com a potência total real ou potência ativa[W]. Portanto, uma carga trifásica equilibrada tem a potência ativa, aparente e reativa definidas pelas equações 𝑃𝑇 = 3 ∙ 𝑉𝐿 ∙ 𝐼𝐿 ∙ cos 𝜃 𝑆𝑇 = 3 ∙ 𝑉𝐿 ∙ 𝐼𝐿 𝑄𝑇 = 3 ∙ 𝑉𝐿 ∙ 𝐼𝐿 ∙ sen 𝜃 22 Eletrotécnica – Luciano das Neves 5.2. Potência em cargas trifásicas não equilibradas Uma propriedade no sistema trifásico muito importante é que o fasor soma das tensões e correntes das três linhas (ou fases) é zero. Quando as impedâncias das três cargas não forem iguais entre si, o fasor soma e a corrente de neutro IN não serão nulos e teremos um sistema desequilibrado. Ocorrerá um desbalanceamento quando aparecer na carga um circuito aberto ou um curto-circuito. Se o sistema trifásico tiver uma fonte de alimentação não equilibrada e uma carga também não equilibrada, os métodos para a solução serão muito complexos. 25 Eletrotécnica – Luciano das Neves 6. Transformadores O transformador é um dispositivo que permite elevar ou rebaixar os valores de tensão em um circuito de CA. A grande maioria dos equipamentos eletrônicos emprega transformadores para elevar ou rebaixar tensões. A figura a seguir mostra alguns tipos de transformadores. 6.1. Funcionamento Quando uma bobina é conectada a uma fonte de CA, um campo magnético variável surge ao seu redor. Se outra bobina se aproximar da primeira, o campo magnético variável gerado na primeira bobina corta as espiras da segunda bobina. Em conseqüência da variação do campo magnético sobre as espiras, surge uma tensão induzida na segunda bobina. A bobina na qual se aplica a tensão CA é denominada primário do transformador. A bobina onde surge a tensão induzida é denominada secundário do transformador. 26 Eletrotécnica – Luciano das Neves Observação As bobinas primária e secundária são eletricamente isoladas entre si. Isso se chama isolação galvânica. A transferência de energia de uma para a outra se dá exclusivamente através das linhas de forças magnéticas. A tensão induzida no secundário é proporcional ao número de linhas magnéticas que cortam a bobina secundária e ao número de suas espiras. Por isso, o primário e o secundário são montados sobre um núcleo de material ferromagnético. Esse núcleo tem a função de diminuir a dispersão do campo magnético fazendo com que o secundário seja cortado pelo maior número possível de linhas magnéticas. Como conseqüência, obtém-se uma transferência melhor de energia entre primário e secundário. Veja a seguir o efeito causado pela colocação do núcleo no transformador. Com a inclusão do núcleo, embora o aproveitamento do fluxo magnético gerado seja melhor, o ferro maciço sofre perdas por aquecimento causadas por dois fatores: a histerese magnética e as correntes parasitas. As perdas por histerese magnética são causadas pela oposição que o ferro oferece à passagem do fluxo magnético. Essas perdas são diminuídas com o emprego de ferro doce na fabricação do núcleo. 27 Eletrotécnica – Luciano das Neves As perdas por corrente parasita (ou correntes de Foucault) aquecem o ferro porque a massa metálica sob variação de fluxo gera dentro de si mesma uma força eletromotriz (f.e.m.) que provoca a circulação de corrente parasita. Para diminuir o aquecimento, os núcleos são construídos com chapas ou lâminas de ferro isoladas entre si. O uso de lâminas não elimina o aquecimento, mas torna-o bastante reduzido em relação ao núcleo de ferro maciço. As chapas de ferro contêm uma porcentagem de silício em sua composição. Isso favorece a condutibilidade do fluxo magnético. A figura a seguir mostra os símbolos usados para representar o transformador, segundo a norma NBR 12522/92 Para se obter várias tensões diferentes, os transformadores podem ser construídos com mais de um secundário, como mostram as ilustrações a seguir. 30 Eletrotécnica – Luciano das Neves A potência do primário depende da tensão aplicada e da corrente absorvida da rede, ou seja: PP = VP . IP A potência do secundário, por sua vez, é o produto da tensão e corrente no secundário, ou seja: PS = VS . IS A relação de potência do transformador ideal é, portanto: VS . IS = VP . IP Quando um transformador tem mais de um secundário, a potência absorvida da rede pelo primário é a soma das potências fornecidas em todos os secundários. Matematicamente, isso pode ser representado pela seguinte equação: PP = PS1 + PS2 + ... + PSn 6.5. Rendimento Entre todas as máquinas elétricas, o transformador é uma das que apresentam maior rendimento. Mesmo assim, ocorrem perdas na transformação de tensão. O rendimento expressa a potência que realmente está sendo utilizada, pois, parte da potência é dissipada em perdas no ferro e no cobre. A relação entre a potência medida no primário e a potência consumida no secundário é que define o rendimento de um transformador: 100 P s P P  31 Eletrotécnica – Luciano das Neves 6.6. Transformador com derivação central no secundário O transformador com derivação central no secundário ("center tap") tem ampla aplicação em eletrônica. Na maioria dos casos, o terminal central é utilizado como referência e é ligado ao terra do circuito eletrônico. Durante seu funcionamento, ocorre uma formação de polaridade bastante singular. Num dos semi-ciclos da rede, um dos terminais livres do secundário tem potencial positivo em relação à referência. O outro terminal tem potencial negativo e a inversão de fase (180o) entre primário e secundário ocorre normalmente. No outro semi-ciclo há uma troca entre as polaridades das extremidades livres do transformador, enquanto o terminal central permanece em 0 V e acontece novamente a defasagem de 180° entre primário e secundário. Assim, verificamos que, com esse tipo de transformador, é possível conseguir tensões negativas e positivas instantaneamente, usando o terminal central como referência. Isso pode ser observado com o auxílio de um osciloscópio. Veja ilustração a seguir. 32 Eletrotécnica – Luciano das Neves 6.7. Polaridade Aditiva Neste tipo de polaridade, os enrolamentos primário e secundário são enrolados em sentidos opostos, formando polaridade contrária. Neste caso dizemos que o deslocamento é aditivo (defasagem de 180°). No esquema abaixo AT e BT tem seus valores máximos e mínimos em sentidos opostos. Subtrativo Neste tipo os enrolamentos primário e secundário são enrolados no mesmo sentido. Neste caso dizemos que é subtrativo (defasagem 0°). 6.8. Autotransformador Analisando um transformador, pressupõem se que exista a isolação entre primário e secundário. Admitindo, que um transformador é uma máquina de alto rendimento, desde que se sacrifique a isolação entre primário e secundário, torna-se possível o aumento sensível do rendimento e um significante ganho de potência. Isso é possível num autotransformador. AT BT AT BT 35 Eletrotécnica – Luciano das Neves a corrente em alta tensão (1200V) A V kVA I ALTA 33,8 1200 10  a potência do autotransformador utilizando a capacidade do enrolamento de 120V calculado em a) kVA AV IV 110 1000 3,831320 22    acréscimo percentual da capacidade do autotransformador em relação do transformador isolado %1100100 10 110  kVA kVA kVA kVA ISOLADO AUTO I1 e IC a partir do valor de I2 AIII A V kVA I C 42,83,8375,91 75,91 110 21 1 1   sobrecarga percentual do enrolamento de 1200V, quando usado como autotransformador. %101100* 33,8 42,8 %  ALTA C I I Como autotransformador a potência nominal aumentou em 110% em relação ao valor original com o enrolamento de baixa tensão no seu valor nominal de corrente e o de alta tensão com uma sobrecarga desprezível (1,01 * INOMINAL). O aumento dramático na capacidade em kVA produzido pela ligação de um transformador isolado como autotransformador tem como motivo o tamanho reduzido de um autotransformador comparado a um transformador isolado de mesma capacidade (potência). Deve-se levar em conta, entretanto, que apenas quando a relação de transformação se aproxima da unidade, ocorre este marcante aumento da capacidade. Se há uma grande 36 Eletrotécnica – Luciano das Neves relação de transformação, o acréscimo de capacidade não é tão significativo (α > 10, o acréscimo em kVA é menor que 10%). Como já mencionado, os transformadores são máquinas de elevado rendimento, assim, praticamente toda energia recebida pelo primário, é disponibilizada ao secundário. Se a energia não pode ser destruída, como é que o autotransformador “transfere” mais energia comparado ao transformador isolado? O mistério da resposta reside no fato de que não há ligação condutiva no transformador isolado. Neste, toda a energia recebida pelo primário, deve ser “convertida” para atingir o secundário. No autotransformador, parte da energia pode ser transferida condutivamente do primário ao secundário, e o restante da energia é transferida por acoplamento magnético. Esta diferença é a responsável pelo acréscimo da capacidade (potência) do autotransformador. 6.8.3. Rendimento de autotransformadores Como já visto, os transformadores isolados possuem alto rendimento onde as perdas por calor se dão devidas as perdas o núcleo (PFe) e as perdas no enrolamento (PCu). O autotransformador transfere parte potência por condução. Conseqüente-mente, para a mesma potência, um autotransformador é considerado menor comparado à um transformador isolado. (Núcleo menor - PFe menor). Assim as perdas no núcleo são consideravelmente menores para uma mesma potência. Aliado ao fato, temos ainda um único enrolamento, por definição, comparado ao transformador isolado. Além da corrente que circula em parte daquele enrolamento é a diferença entre as correntes primária e secundária. Esses fatores (enrolamento + corrente) tendem a reduzir também as perdas variáveis (PCu). O efeito disso é que o autotransformador possui um rendimento excepcionalmente elevado (η ≥ 99%) muito próximo de ser ideal. Observe os exemplos abaixo: 37 Eletrotécnica – Luciano das Neves Nota-se que quanto mais próxima da unidade, seja a relação de transformação, menor será a corrente circulando pelo enrolamento reduzindo assim as perdas variáveis no cobre. Concluímos assim que os autotransformadores são geralmente menores e de maior rendimento comparado aos transformadores convencionais isolados de mesma capacidade e que o rendimento dos autotransformadores aumenta quando a relação de transformação se aproxima da unidade. Mas se os autotransformadores são tão superiores em relação aos transformadores convencionais, por que não utilizamos somente autotransformadores? Vamos tomar como exemplo um transformador de distribuição usado em transmissão de energia (23kV – 230V). No caso de um transformador isolado, qualquer anomalia que aconteça (ex. circuito aberto) ocorra no primário ou secundário do transformador isolado, a tensão na carga será nula e o transformador será substituído tão logo seja possível. Analisando a mesma situação com uso do autotransformador, as junções “a“ e “b” carregam as correntes mais altas (100A neste caso), desenvolvendo assim pontos aquecidos (prováveis) que podem resultar em circuitos abertos. Uma abertura entre as junções “a” e “b” no enrolamento, aplicam instantaneamente 23kV a carga! Mesmo com dispositivos de sobrecorrente, no tempo de atuação destes, podem ocorrer danos eminentes. Em todo caso, a linha estará com 23kV com referência ao terra. Por isso, o uso de autotransformadores é confinado a aplicações sob tensões relativamente baixas. Exercícios 1) Um transformador para campainha reduz a tensão de 110V para 12V. Se houver 20 espiras no secundário, qual o número de espiras no primário e a relação de transformação deste transformador. 2) Calcule a tensão nas velas de ignição ligadas ao secundário de uma bobina com 60 espiras no primário e 36000 espiras no secundário, se o primário está ligado a um alternador de 12V. 40 Eletrotécnica – Luciano das Neves O rotor é constituído por um cilindro de chapas em cuja periferia existem ranhuras onde o enrolamento rotórico é alojado. Funcionamento Quando a corrente trifásica é aplicada aos enrolamentos do estator do motor assíncrono de CA, produz-se um campo magnético rotativo (campo girante). A ilustração a seguir mostra a ligação interna de um estator trifásico em que as bobinas (fases) estão defasadas em 120º e ligadas em triângulo. O campo magnético gerado por uma bobina depende da corrente que no momento circula por ela. Se a corrente for nula, não haverá formação de campo magnético; se ela for máxima, o campo magnético também será máximo. Como as correntes nos três enrolamentos estão com uma defasagem de 120º, os três campos magnéticos apresentam também a mesma defasagem. Os três campos magnéticos individuais combinam-se e disso resulta um campo único cuja posição varia com o tempo. Esse campo único, giratório é que vai agir sobre o rotor e provocar seu movimento. O esquema a seguir mostra como agem as três correntes para produzir o campo magnético rotativo num motor trifásico. 41 Eletrotécnica – Luciano das Neves No esquema vemos que no instante 1, o valor da corrente A é nulo e, portanto, não há formação de campo magnético. Isto é representado pelo 0 (zero) colocado no pólo do estator. As correntes B e C possuem valores iguais, porém sentidos opostos. Como resultante, forma-se no estator, no instante 1, um campo único direcionado no sentido N S. No instante 2, os valores das correntes se alteram. O valor de C é nulo. A e B têm valores iguais, mas A é positivo e B é negativo. O campo resultante se desloca em 60º em relação à sua posição anterior. Quando um momento intermediário (d) é analisado, vemos que nesse instante as correntes C e A têm valores iguais e o mesmo sentido positivo. A corrente B, por sua vez, tem valor máximo e sentido negativo. Como resultado, a direção do campo fica numa posição intermediária entre as posições dos momentos 1 e 2. 42 Eletrotécnica – Luciano das Neves Se analisarmos, em todos os instantes, a situação da corrente durante um ciclo completo, verificamos que o campo magnético gira em torno de si. A velocidade de campo relaciona-se com a freqüência das correntes conforme já foi demonstrado. Tipos de motores assíncronos Os motores assíncronos diferenciam-se pelo tipo de enrolamento do rotor. Assim, temos: Motor com rotor em gaiola de esquilo; Motor de rotor bobinado. Motor com rotor em gaiola de esquilo O motor com rotor em gaiola de esquilo tem um rotor constituído por barras de cobre ou de alumínio colocadas nas ranhuras do rotor. As extremidades são unidas por um anel também de cobre ou de alumínio. Entre o núcleo de ferro e o enrolamento de barras não há necessidade de isolação, pois as tensões induzidas nas barras do rotor são muito baixas. Esse tipo de motor apresenta as seguintes características: Velocidade que varia de 3 a 5% de vazio até a plena carga, Ausência de controle de velocidade, Possibilidade de ter duas ou mais velocidades fixas, Baixa ou média capacidade de arranque, dependendo do tipo de gaiola de esquilo do rotor (simples ou dupla). Esses motores são usados para situações que não exijam velocidade variável e que possam partir com carga. Por isso, são usados em moinhos, ventiladores, prensas e bombas centrífugas, por exemplo. No funcionamento do motor com rotor em gaiola de esquilo, o rotor, formado por condutores de cobre é submetido ao campo magnético giratório, já explicado anteriormente. Como conseqüência, nesses condutores (barras da gaiola de esquilo) circulam correntes induzidas, devido ao movimento do campo magnético. 45 Eletrotécnica – Luciano das Neves O motor trifásico de rotor bobinado é recomendado nos casos em que se necessita de partidas a plena carga. Sua corrente de partida apresenta baixa intensidade: apenas uma vez e meia o valor da corrente nominal. É também usado em trabalhos que exigem variação de velocidade, pois o enrolamento existente no rotor, ao fazer variar a intensidade da corrente que percorre o induzido, faz variar a velocidade do motor. Deve-se lembrar porém que o motor de rotor bobinado é mais caro que os outros devido ao elevado custo de seus enrolamentos e ao sistema de conexão das bobinas do rotor, tais como: anéis, escovas, porta-escovas, reostato. Em pleno regime de marcha, o motor de rotor bobinado apresenta um deslizamento maior que os motores comuns. É importante saber que há uma relação entre o enrolamento do estator e o do rotor. Essa relação é de 3 : 1, ou seja, se a tensão do estator for 220V, a do rotor em vazio será de 220 : 3, ou 73V aproximadamente. A mesma relação pode ser aplicada às intensidades da corrente. Se a intensidade no estator for 10A, o rotor será percorrido por uma corrente de 10 . 3 = 30A Conseqüentemente, a seção do fio do enrolamento deve ser calculada para essa corrente. Por isso, os enrolamentos dos induzidos têm fios de maior seção que os do indutor. Observação É importante verificar na plaqueta do motor as correntes do estator e do rotor. 7.1.2. Motor síncrono de CA O motor síncrono de CA apresenta a mesma construção de um alternador e ambos têm o rotor alimentado por CC. A diferença é que o alternador recebe energia mecânica no eixo e produz CA no estator; o motor síncrono, por outro lado, recebe energia elétrica trifásica CA no estator e fornece energia mecânica ao eixo. Esse tipo de motor apresenta as seguintes características: 46 Eletrotécnica – Luciano das Neves Velocidade constante (síncrona); Velocidade dependente da freqüência da rede; Baixa capacidade de arranque. Por essas características, o motor síncrono é usado quando é necessária uma velocidade constante. Funcionamento A energia elétrica de CA no estator cria o campo magnético rotativo, enquanto o rotor, alimentado com CC, age como um ímã. Um ímã suspenso num campo magnético, gira até ficar paralelo ao campo. Quando o campo magnético gira, o ímã gira com ele. Se o campo rotativo for intenso, a força sobre o rotor também o será. Ao se manter alinhado ao campo magnético rotativo, o rotor pode girar uma carga acoplada ao seu eixo. Quando parado, o motor síncrono não pode partir com aplicação direta de corrente CA trifásica no estator, o que é uma desvantagem. De modo geral, a partida é feita como a do motor de indução (ou assíncrono). Isso porque o rotor do motor síncrono é constituído, além do enrolamento normal, por um enrolamento em gaiola de esquilo. 7.2. Ligação dos motores trifásicos Como já foi estudado, o motor trifásico tem as bobinas distribuídas no estator e ligadas de modo a formar três circuitos simétricos distintos, chamados de fases de enrolamento. 47 Eletrotécnica – Luciano das Neves Essas fases são interligadas formando ligações em estrela (Y) ou em triângulo (Δ), para o acoplamento a uma rede trifásica. Para isso, deve-se levar em conta a tensão em que irão operar. Na ligação em estrela, o final das fases se fecha em si, e o início se liga à rede. Na ligação em triângulo, o início de uma fase é fechado com o final da outra, e essa junção é ligada à rede. Os motores trifásicos podem dispor de 3, 6, 9 ou 12 terminais para a ligação do estator à rede elétrica. Assim, eles podem operar em uma, duas, três ou quatro tensões respectivamente. Todavia, é mais comum encontrar motores com 6 e 12 terminais. Os motores trifásicos com 6 terminais só podem ser ligados em duas tensões uma a 3 maior do que a outra. Por exemplo: 220/380V ou 440/760V. Esses motores são ligados em triângulo na menor tensão e, em estrela, na maior tensão. A figura a seguir mostra uma placa de ligação desse tipo de motor. 50 Eletrotécnica – Luciano das Neves obtido trocando-se a ligação de dois condutores de alimentação. Olhando de frente a ponta do eixo do motor, dizemos que o sentido da rotação é horário ou anti-horário, conforme seja o caso. 7.3.6. A energia elétrica dentro do motor Um motor funcionando a plena carga absorve uma energia elétrica que é quase totalmente transformada em potência útil efetiva. A diferença entre a potência absorvida da rede e a potência efetiva do motor é transformada, em sua maior parte, em calor. Esse calor é absorvido pelas partes do motor, tais como carcaça, tampas laterais, rotor, rolamentos e, em seguida, é dissipado no ar ambiente. A dissipação é auxiliada pelo ventilador montado no eixo do motor. O motor, quando está ligado, encontra-se à temperatura ambiente. Depois de ligado, sua temperatura aumenta devido à produção de calor. Quando o calor absorvido é igual ao calor dissipado, dizemos que o motor atingiu um ponto de equilíbrio. Esse equilíbrio depende da área total do motor e da eficiência de ventilador. Quanto maior for a área, menor será a temperatura final de equilíbrio. A temperatura de equilíbrio ideal seria obtida com um motor com grande área de dissipação, ou seja, com uma grande carcaça em relação à potência. Mas isto tornaria o custo do motor muito elevado. Por esta razão, produzem motores com carcaças pequenas, usando-se materiais que suportem temperaturas elevadas. Normalmente encontram-se motores cujas temperaturas externas atingem 80ºC, 90ºC ou mais, e mesmo assim esses motores continuam funcionando dentro de suas características, sem reduzir suas vidas úteis. Isto se deve a materiais isolantes modernos e que suportam temperaturas elevadas. 7.4. Polarização Um motor elétrico tem, no mínimo, um par de pólos: norte e sul. Este par de pólos é formado pela ligação de dois grupos de bobinas. Num dos grupos, o sentido da corrente é igual ao do movimento dos ponteiros do relógio; este é o pólo norte. No outro, o sentido da corrente é em sentido contrário ou anti-horário; este é o pólo sul. Veja o sentido da corrente representado na figura abaixo. 51 Eletrotécnica – Luciano das Neves 7.4.1. Pólos ativos São pólos criados de ligações de grupos de bobinas. Essas ligações são feitas uma ao contrário da outra. Se houver dois grupos de bobinas, haverá dois pólos ativos. Observe a figura abaixo. 7.4.2. Pólos conseqüentes São pólos criados por conseqüência, como o próprio nome diz. Metade do número de pólos é formado por pólos ativos e a outra metade aparece em conseqüência da primeira. A corrente circula nos grupos em um único sentido. No exemplo da figura seguinte, temos dois grupos de bobinas cuja ligação apresenta dois pólos ativos e dois pólos que aparecem por conseqüência. Isto nos dá uma polarização de 4 pólos. O bobinado de pólos conseqüentes é utilizado para motores de 4 pólos ou mais. Neste tipo de bobinado, o número de grupos de bobinas por pólo e fase é igual à metade do número de pólos magnéticos do motor. Esses grupos estão ligados de tal forma que a corrente circula no mesmo sentido em todos os grupos pertencentes à mesma fase. Na figura a seguir está representado um motor trifásico de 12 ranhuras, 4 pólos, com bobinado meio imbricado de um lado de bobina por ranhura, uma bobina por pólo e duas bobinas por fase. 52 Eletrotécnica – Luciano das Neves Nos centros da cada bobina de uma mesma fase formam-se dois pólos chamados norte e nos espaços existentes entre as bobinas criam-se os pólos opostos, chamados sul. 7.5. Motores monofásicos É uma máquina de pequena potência e que é alimentada por rede monofásica. Esse tipo de motor é utilizado com mais freqüência em residências, como, por exemplo, em geladeiras em bombas para sucção de água. Veja a figura abaixo, as partes componentes do motor monofásico de fase auxiliar em posição de montagem. No estator, há dois enrolamentos. Um deles, que é o principal, é também chamado de enrolamento de serviço. Este enrolamento localiza-se no fundo das ranhuras. O outro é chamado de enrolamento auxiliar e localiza-se sobre o enrolamento principal ou em ranhuras próprias. O enrolamento auxiliar pode ser identificado pelo fio de suas bobinas que, normalmente, têm a metade da seção do fio do enrolamento principal. 55 Eletrotécnica – Luciano das Neves sua posição original. Como o conjugado é igual em ambas as direções, pois as forças são exercidas pelo centro do rotor e em sentidos contrários, o rotor continua parado. Se o rotor estiver girando, ele continuará o giro na direção inicial, já que o conjugado será ajudado pela inércia do rotor e pela indução de seu campo magnético. Como o rotor está girando, a defasagem entre os campos magnéticos do rotor e do estator não será mais de 180°. Para dar o giro inicial do rotor, são usados comumente dois tipos de partida: a de campo destorcido e a de fase auxiliar com capacitor. Assim, conforme o tipo de partida, o motor monofásico de indução pode ser de dois tipos: de campo destorcido (ou motor de anéis em curto) e de fase auxiliar. Motor de campo destorcido (pólo sombreado) O motor de campo destorcido constitui-se por um rotor do tipo gaiola de esquilo e por um estator semelhante ao do motor universal. Contudo, no motor de campo destorcido, existe na sapata polar uma ranhura onde fica alojado um anel de cobre ou espira em curto-circuito. Por isso, este motor é conhecido também como motor de anel ou de espira em curto-circuito. 56 Eletrotécnica – Luciano das Neves Uma vez que no motor de campo destorcido, o rotor é do tipo gaiola de esquilo, todas as ligações encontram-se no estator. Esse tipo de motor não é reversível. Sua potência máxima é de 300W ou 0,5cv; a velocidade é constante numa faixa de 900 a 3400rpm, de acordo com a freqüência da rede e o número de pólos do motor. Esses motores são usados, por exemplo, em ventiladores, toca-discos, secadores de cabelo etc. Motor monofásico de fase auxiliar O motor monofásico de fase auxiliar é o de mais larga aplicação. Sua construção mecânica é igual à dos motores trifásicos de indução. Assim, no estator há dois enrolamentos: um de fio mais grosso e com grande número de espiras (enrolamento principal ou de trabalho) e outro de fio mais fino e com poucas espiras (enrolamento auxiliar ou de partida). O enrolamento principal fica ligado durante todo o tempo de funcionamento do motor, mas o enrolamento auxiliar só atua durante a partida. Esse enrolamento é desligado ao ser acionado um dispositivo automático localizado parte na tampa do motor e parte no rotor. Geralmente. Um capacitor é ligado em série com o enrolamento auxiliar, melhorando desse modo o conjugado de partida do motor. 57 Eletrotécnica – Luciano das Neves Funcionamento O motor monofásico de fase auxiliar funciona em função da diferença entre as indutâncias dos dois enrolamentos, uma vez que o número de espiras e a bitola dos condutores do enrolamento principal são diferentes em relação ao enrolamento. As correntes que circulam nesses enrolamentos são defasadas entre si. Devido à maior indutância no enrolamento de trabalho (principal), a corrente que circula por ele se atrasa em relação à que circula no enrolamento de partida (auxiliar), cuja indutância é menor. O capacitor colocado em série com o enrolamento tem a função de acentuar ainda mais esse efeito e aumentar o conjugado de partida. Isso aumenta a defasagem, aproximando-a de 90º e facilita a partida do motor. Depois da partida, ou seja, quando o motor atinge aproximadamente 80% de sua rpm, o interruptor automático se abre e desliga o enrolamento de partida. O motor, porém continua funcionando normalmente. 7.5.2. Ligação dos motores monofásicos Os motores monofásicos de fase auxiliar podem ser construídos com dois, quatro ou seis terminais de saída. Os motores de dois terminais funcionam em uma tensão (110 ou 220V) e em um sentido de rotação.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved