Sistema de Automação e Controle

Sistema de Automação e Controle

(Parte 2 de 46)

Este tipo de automação justifica-se do ponto de vista econômico quando se pretende realizar uma elevada produção. Como exemplos de sistemas deste tipo, podemos citar as primeiras linhas de montagem de automóveis nos Estados Unidos. (Ex: linha de produção do Ford T, 1913).

  1. Automação Programável

Neste caso, o equipamento é montado com a capacidade de se ajustar a alterações da seqüência de produção quando se pretende alterar o produto final. A seqüência de operações é controlada por um programa. Assim, para cada novo produto terá que ser realizado um novo programa. Os aspectos típicos da automação programável são:

• Elevado investimento em equipamento genérico,

• Taxas de produção inferiores à automação fixa,

• Flexibilidade para alterações na configuração da produção,

• Bastante apropriada para produção por lotes (“batch processing”).

No final da produção de um lote, o sistema é reprogramado. Os elementos físicos envolvidos como, por exemplo, ferramentas de corte e parâmetros de trabalho das máquinas ferramentas, devem ser reajustados. O tempo despendido na produção de um lote deve incluir o tempo dedicado aos ajustamentos iniciais e o tempo de produção do lote propriamente dito.

Podem-se referir como exemplos de sistemas de automação programável as máquinas de Comando Numérico (“CNC – Computer Numeric Control”) com início de atividade em 1952 e as primeiras aplicações de robôs industriais em 1961. (Ver Fig.1.4).

Fig.1.4

Exemplo de aplicação industrial de um robô: alimentação de peças de uma máquina-ferramenta. (Fonte: Eshed Robotec).

  1. Automação Flexível

É uma extensão da automação programável. A definição exata desta forma de automação está ainda em evolução, pois os níveis de decisão que envolve podem neste momento incluir toda a organização geral da produção. Um sistema flexível de produção é capaz de produzir uma determinada variedade de produtos sem perda significativa de tempo de produção para ajustamentos entre tipos diferentes. Assim, o sistema pode produzir várias combinações de produtos sem necessidade de os organizar em lotes separados.

Os aspectos típicos da automação flexível são:

  • Elevados investimentos no sistema global;

  • Produção contínua de misturas variáveis de produtos;

  • Taxas de produção média;

  • Flexibilidade de ajustamento às variações no tipo dos produtos;

Os aspectos essenciais que distinguem a automação flexível da programável são:

  • Capacidade de ajustamento dos programas a diferentes produtos sem perda de tempo de produção;

  • Capacidade de ajustamento dos elementos físicos da produção sem perda de tempo de produção;

Fig.1.5.

Exemplo de um sistema automático flexível controlado por computador. (Fonte: Eshed Robotec).

As alterações dos programas são feitas normalmente “off-line” num nível hierárquico superior, sendo transmitidas ao computador do processo via ligação em rede.

A evolução previsível da automação flexível no futuro próximo será função dos desenvolvimentos que se vierem a dar nas seguintes áreas:

  • Desenvolvimento de computadores cada vez mais rápidos e em comunicação com todos os sistemas envolvidos na produção, através de redes industriais (Ex: redes Ethernet, Telway, PROFIBUS, etc).

  • Desenvolvimento de programas “inteligentes("Expert Systems"),

  • Desenvolvimentos nos campos da robótica e da visão artificial,

  • Desenvolvimento nos veículos guiados automaticamente (AGV’s).

  1. CONTROLE DE PROCESSOS INDUSTRIAIS

    1. Considerações gerais

A regulação e o controle automático de sistemas industriais desempenha um papel de vital importância no desenvolvimento da ciência e da engenharia. Para além de possuir uma importância fundamental nos sistemas de pilotagem de navios, aviões, mísseis, veículos espaciais, etc. passou a tornar-se uma parte integrante do funcionamento de processos industriais típicos (manufatura, produção de energia, produtos químicos, transportes, instalações de frio e ar condicionado, etc.). O controle automático é essencial, por exemplo, em operações industriais que envolvam o controle de posição, velocidade, pressão, vazão, temperatura, umidade, viscosidade, etc. Neste capítulo, vamos apresentar os conceitos básicos relativos à teoria do controle automático, bem como as principais estruturas utilizadas no controle de processos industriais. Por fim, faremos uma breve descrição do tipo de controladores ou reguladores mais utilizados na indústria, bem como as suas principais características e formas de ajuste dos respectivos parâmetros.

      1. Perspectiva Histórica

Embora desde sempre o homem tenha tentado controlar os fenômenos naturais em seu próprio proveito, a primeira tentativa séria e que historicamente é considerada como um dos primeiros trabalhos significativos na área de controle automático, foi efetuado pelo investigador James Watt, que construiu um regulador centrífugo para efetuar o controle de velocidade de uma máquina a vapor (Inglaterra, séc. XVIII). Dado o seu interesse histórico, apresenta-se na Fig.2.1, o esquema de um regulador de velocidade de um motor Diesel, baseado no princípio inventado por James Watt.

Fig.2.1.

Esquema básico do regulador de Watt aplicado à regulação de velocidade de motor Diesel.

No esquema da Fig.2.1, podemos verificar que o veio do motor tem acoplado um sistema com duas massas (m) que rodam com o veio à velocidade de rotação ω. Assim, quando o motor aumenta de rotação, devido à ação centrífuga as massas tendem a afastar-se diminuindo o curso (y), elevando assim a haste (h) ligada à válvula de combustível. Deste modo, o caudal de combustível diminui o que faz baixar a velocidade de rotação do motor. Por conseguinte, as massas tendem a aproximar-se do veio, aumentando y, baixando h aumentando a velocidade do motor ω. Este procedimento repete-se até se atingir uma situação de equilíbrio.

No século XX, foram iniciados de fato os estudos e as aplicações do controle automático à indústria. Assim, com o avanço da ciência e da tecnologia, foram dados os primeiros passos nas décadas de vinte e trinta, períodos nos quais foram efetuados importantes desenvolvimentos. Durante a década de quarenta, foram dados novos e importantes passos nesta área. Deste modo, após a introdução do primeiro regulador pneumático PID1na indústria, os investigadores J. Ziegler e N. Nichols desenvolveram um método de ajuste ótimo destes reguladores, que ficou conhecido por "Método de Ziegler-Nichols". Este método permitiu resolver muito dos problemas de ajuste dos parâmetros de reguladores, através de uma metodologia relativamente simples e eficaz.

a) b)

Fig.2.2.

a)Aspecto de um regulador pneumático PID atual utilizado na indústria.

b)Controlador eletrônico e sensores analógicos de diversos tipos.

Nos anos setenta e seguintes, devido ás crescentes potencialidades dos computadores digitais para efetuar a manipulação de grandes volumes de dados e de efetuar cálculos complexos, estes passaram a ser progressivamente cada vez mais utilizados na construção de reguladores industriais, sensores transdutores, etc. Esta técnica, que recorre à utilização em larga escala de micro-computadores para efetuar a monitorização e o controle digital é conhecida por controle digital direto (DDC - "Direct Digital Control"). Neste tipo de controle, é utilizado um computador digital para efetuar o controle do processo em tempo real, de um ou mais processos, consoante o tipo e complexidade da aplicação industrial.

Fig.2.3.

Aspecto de uma gama de reguladores industriais atuais baseados em microprocessador.

Por fim, os métodos de estudo e análise de sistemas de controle contínuo e digital passaram a ficar extraordinariamente facilitados com o surgimento nos últimos anos de diversas ferramentas informatizadas cada vez mais poderosas, versáteis e com capacidades gráficas muito interessantes. Deste modo, o estudo de sistemas complexos, que através dos métodos tradicionais se revelava bastante complexo, passou a ser bastante acessível através do recurso às potencialidades destes programas2, de utilização cada vez mais generalizada no ensino das matérias de Controle Automático.

Fig.2.4.

Exemplo de um diagrama de simulação gráfico em MATLAB/SIMULINK

NOTA: A figura representa o diagrama de blocos do sistema de controle em malha fechada de um motor de combustão interna.

    1. Estruturas básicas do Controle Automático

      1. Controle em Malha Fechada

No sistema clássico de controle em malha fechada, que na sua forma mais usual é constituído por componentes contínuos ou analógicos, o sinal de saída possui um efeito direto na ação de controle, pelo que poderemos designá-los por sistemas de controle com realimentação ou retroação ("feedback”). Neste tipo de sistemas, o sinal de erro que corresponde à diferença entre os valores de referência e de realimentação (que pode ser o sinal de saída ou uma função do sinal de saída), é introduzido no controlador de modo a reduzir o erro e a manter a saída do sistema num determinado valor, pretendido pelo operador. Por outras palavras, o termo "MALHA FECHADA" implica necessariamente a existência de uma realimentação com o objetivo de reduzir o erro, e manter deste modo a saída do sistema num determinado valor desejado. A Fig.2.5 representa a relação entrada-saída de um sistema de controle típico em malha fechado. Esta representação gráfica é designada na literatura de Controle por "DIAGRAMA DE BLOCOS".

Ação de controle

Fig.2.5.

Diagrama de blocos de um sistema de controle em malha fechada.

Para ilustrar o sistema de controle em malha fechada, vamos considerar o sistema térmico da Fig.2.6, na qual está representado um operador que desempenha a função de controlador. Este operador pretende manter constante a temperatura da água à saída de um permutador de calor. No coletor de saída, está montado um termômetro (elemento de medida) que mede a temperatura real da água quente (variável de saída do sistema). Deste modo, em função das indicações fornecidas pelo elemento de medida, o operador irá manipular a válvula de controle de vazão de vapor de aquecimento, de modo a manter a temperatura da água o mais próxima possível do valor desejado.

Fig.2.6.

Esquema de Controle Manual de um Sistema Térmico.

Se em vez do operador, for utilizado um controlador automático, conforme apresentado na Fig.2.7, o sistema de controle passa a designar-se por automático. Neste caso, o operador seleciona a temperatura de referência ("set-point") no controlador. A saída do processo (temperatura real da água quente à saída do permutador de calor), é medida pelo transdutor de temperatura, e comparada no controlador com a temperatura de referência de modo a gerar um sinal de erro. Tomando como base este sinal de erro, o controlador gera um sinal de comando3para a válvula de regulação de vapor (atuador).

Este sinal de comando permite variar gradualmente a abertura da válvula, e, por conseguinte a vazão de vapor a admitir no permutador. Deste modo, é possível controlar automaticamente a temperatura da água à saída do permutador, sem que seja necessária a intervenção do operador.

Fig.2.7.

Esquema do sistema de regulação automática de um sistema térmico.

a) b) c) d)

Fig.2.8.

Dispositivo de regulação de temperatura com componentes atuais.

a) Transdutor de temperatura.

b) Controlador digital PID.

(Parte 2 de 46)

Comentários