Apostila sobre enzimas

Apostila sobre enzimas

(Parte 1 de 2)

ESTÁGIO DE DOCÊNCIA Enzimas

JULHO 2006

1 Conceito

Enzimas são catalisadores biológicos, formados por longas cadeias de moléculas pequenas, chamadas de aminoácidos. São, portanto, um tipo de proteína com atividade catalítica, sendo encontradas na natureza em todos os seres vivos. Sua função é viabilizar a atividade das células, quebrando moléculas ou juntando-as para formar novos compostos. A singularidade desses compostos decorre do elevado grau de especificidade ao substrato em condições moderadas, sob as quais atuam. Algumas enzimas são específicas para determinado tipo de ligação química, como por exemplo, a capacidade da α-amilase de romper unicamente as ligações α-1,4 das moléculas de amido. Outras são específicas para um tipo particular de isômeros ópticos, como a oxidação da β-D-glicose pela glicose oxidase.

“Toda a enzima é uma proteína, mas nem toda proteína é uma enzima”.

2 Características das Enzimas

• São produtos naturais biológicos; • Apresentam um alto grau de especificidade;

• Reações baratas e seguras;

• Possuem mecanismo de “turnover”, desempenhando a mesma função consecutivamente, sem serem consumidas no processo;

• São altamente eficientes, acelerando a velocidade das reações de 108 a 1011 vezes;

• São econômicas, reduzindo a energia de ativação necessária para a reação catalisada;

• Não são tóxicas.

3 Proteínas

Exceto um grupo de moléculas de RNA com propriedades catalíticas (ribozimas), todas as enzimas são proteínas. A atividade catalítica depende da sua conformação protéica nativa, sendo esta perdida quando a enzima é desnaturada ou dissociada em subunidades.

Os componentes das enzimas, os aminoácidos, apresentam um átomo de carbono ligado a uma carboxila, a um grupo amino e a um átomo de hidrogênio. O quarto substituinte é uma cadeia (grupo R) específica para cada aminoácido (Figura 1).

Figura 1. Representação esquemática do aminoácido.

Para serem ativas, algumas enzimas requerem apenas seus resíduos de aminoácidos.

Outras requerem componentes químicos adicionais chamados cofatores. Um cofator pode ser um ou mais íons inorgânicos, tais como Fe2+, Mg2+, Mn2+ ou Zn2+, ou uma molécula orgânica complexa, chamada coenzimas. Algumas enzimas requerem ambos, coenzima e íon metálico para exibirem sua atividade. Uma coenzima, ou íon metálico, que está covalentemente ligada à parte protéica da enzima é chamada grupo prostético. Uma enzima completa, cataliticamente ativa, unida à sua coenzima e/ou íons metálicos, é chamada de holoenzima. A parte exclusivamente protéica desta enzima é chamada de apoenzima ou apoproteína.

3.1 Coenzimas

São aceptores de átomos ou grupos funcionais retirados do substrato em uma dada reação e como doadores destes mesmos grupos ao participarem de uma outra reação e, por isto, diz-se que as coenzimas são transportadoras de determinados grupos (Tabela 1). O fato de as coenzimas estarem sendo constantemente recicladas permite que suas concentrações celulares possam ser bastante reduzidas, muito menores do que as concentrações do substrato.

Tabela 1. Coenzimas e grupos aos quais se ligam/desligam em diferentes reações.

Coenzima Grupo transportado Adenosina trifosfato (ATP) Fosfato

Biotina CO2 Coenzima A Acila

Flavina adenina dinucleotídeo (FAD) Hidrogênio

Tetraidrofolato Carbono

Nicotinamida adenina dinucleotídeo (NAD+) Hidreto Tiamina pirofosfato (TPP) Aldeído

Em alguns casos, a coenzima encontra-se covalentemente ligada à molécula enzimática, constituindo um grupo prostético da proteína; em outros casos, a coenzima é uma molécula “livre”, reunindo-se à enzima apenas no momento da catálise.

Algumas coenzimas são integralmente sintetizadas pelas células; outras apresentam em sua molécula um componente orgânico que não pode ser sintetizado pelos animais superiores. Esse componente, ou um precursor imediato, deve então ser obtido através da dieta, constituindo uma vitamina. As vitaminas são compostos orgânicos indispensáveis ao crescimento e funções normais dos animais superiores. Estas são classicamente divididas em hidrossolúveis e lipossolúveis, sendo as vitaminas hidrossolúveis aquelas que possuem função de coenzima ou fazem parte de moléculas de coenzimas.

4 Estruturas das enzimas

4.1 Estrutura primária

Na molécula protéica, os aminoácidos estão ligados uns aos outros através da ligação peptídica (Figura 2), estabelecida entre o grupo α-carboxila de um aminoácido e o grupo α- amino do aminoácido subseqüente, formando uma longa cadeia. Grupos carboxila e grupos amino do radical R jamais participam da ligação peptídica.

O que caracteriza cada enzima é o número de aminoácidos componentes de sua cadeia e a ordem em que eles se encontram, ou seja, a sua estrutura primária. Assim, apesar de constituídas por apenas 20 aminoácidos diferentes, as possibilidades de estruturas diversas para as proteínas são muito grandes. A estrutura primária é responsável pelas estruturas de ordem superior que a proteína exibe em sua forma celular, ou nativa.

Figura 2. Esquema da formação da ligação peptídica.

4.2 Estrutura secundária

Dois tipos diferentes de organização regular, chamadas estruturas secundárias, são encontradas nas enzimas. A cadeia peptídica pode ter segmentos organizados em α-hélice, sendo formada e estabilizada por pontes de hidrogênio estabelecidas entre o átomo de nitrogênio e o átomo de oxigênio (Figura 3).

Cada ligação peptídica oferece os elementos para a formação da ponte de hidrogênio: um átomo de hidrogênio covalentemente ligado ao nitrogênio e o oxigênio, preso ao carbono por uma dupla ligação. A ligação por ponte de hidrogênio é estabelecida entre os átomos constituintes de uma ligação peptídica qualquer e os átomos da quarta ligação peptídica subseqüente, que a volta da hélice aproximou da primeira. Cada ponte de hidrogênio é uma ligação fraca, mas o grande número dessas interações confere muita estabilidade à estrutura que mantêm. (Figura 4).

Figura 3. Ponte de hidrogênio, formada com os elementos da ligação peptídica.

Figura 4. Esquema da α-hélice, estabilizada por pontes de hidrogênio.

A folha β-pregueada é formada por um arranjo paralelo de dois ou mais segmentos de cadeias peptídicas, mantidas por pontes de hidrogênio formadas pelos mesmos elementos que constituem as pontes de hidrogênio da α-hélice (Figura 5). Nesse caso a ponte de hidrogênio une dois segmentos distintos da cadeia protéica.

Figura 5. Esquema da folha β-pregueada, estabilizada por pontes de hidrogênio.

As enzimas apresentam, em sua conformação espacial, as duas estruturas secundárias; parte da cadeia está organizada em α-hélice e parte em folha β-pregueada. Aparecem também regiões de conformação irregular, conectando os segmentos com arranjo definido (Figura 6).

Figura 6. Estrutura da lisozima, indicando segmentos em α-hélice, segmentos em folha β-pregueada e regiões sem estrutura regular.

4.3 Estrutura terciária

Esta estrutura descreve a conformação tridimensional que a molécula protéica assume em solução, explicando o dobramento da cadeia peptídica com os enrolamentos, dobras e voltas que a compõem e que a levam a uma forma geral globular. As ligações químicas que estabelecem e mantêm a estrutura terciária são formadas sempre entre os grupos R dos aminoácidos. Estes grupos R podem ser divididos em dois tipos: apolares (hidrofóbicos) e polares. Como a água é um solvente polar, os grupos R apolares tendem a aproximar-se uns dos outros, excluindo a água, situando-se no interior da molécula, enquanto os grupos polares voltam-se para a superfície. Essa localização dos grupos R constitui uma força poderosa de dobramento da cadeia polipeptídica.

Outras forças devem ser consideradas. Grupos R com carga elétrica positiva fazem ligações eletrostáticas com grupos R com carga negativa. Outras forças importantes são as pontes de hidrogênio, formadas entre grupos R. Ao contrário das pontes de hidrogênio da estrutura secundária, estas não apresentam qualquer padrão regular, pois a localização dos grupos R, capazes de oferecer os elementos para a formação da ponte de hidrogênio, estão distribuídos irregularmente ao longo da cadeia peptídica segundo a estrutura primária da enzima.

As interações responsáveis pela estrutura tridimensional das enzimas são todas forças fracas. Mas pode ser encontrada também uma ligação covalente fazendo parte das ligações que mantêm a estrutura terciária: são as pontes dissulfeto, ou pontes S-S, formadas pela oxidação de dois grupos –SH, cada um dos quais presente na cadeia lateral de um resíduo de cisteína, o único aminoácido a apresentar –SH no grupo R. Designa-se resíduo de aminoácido à fração da molécula de aminoácido efetivamente inserida na cadeia protéica. A Figura 7 mostra as principais ligações da estrutura terciária.

Obs: A forma espacial da enzima, responsável pela sua função, é resultado indireto de sua estrutura primária.

Figura 7. Esquema das principais ligações responsáveis pela estrutura terciária das enzimas. (a) interação hidrofóbica; (b) ponte dissulfeto; (c) ligação eletrostática; (d) ponte de hidrogênio; (e) região sem estrutura definida.

4.4 Estrutura quaternária

Estrutura quaternária é a organização presente nas proteínas compostas de uma cadeia polipeptídica e descreve quantos e quais monômeros compõem a molécula e como estes monômeros estão associados. As forças que mantêm unidos os monômeros são as mesmas que mantêm a estrutura terciária: interações hidrofóbicas, pontes de hidrogênio e ligações salinas, formadas, entre grupos R de aminoácidos pertencentes a cadeias polipeptídicas diferentes (Figura 8). A exceção são as pontes dissulfeto, ausentes na estrutura quaternária.

(Parte 1 de 2)

Comentários