Cartografia para geoprocessamento

Cartografia para geoprocessamento

(Parte 1 de 5)

CARTOGRAFIA PARA GEOPROCESSAMENTO Júlio César Lima D’Alge

A razão principal da relação interdisciplinar forte entre Cartografia e

Geoprocessamento é o espaço geográfico. Cartografia preocupa-se em apresentar um modelo de representação de dados para os processos que ocorrem no espaço geográfico. Geoprocessamento representa a área do conhecimento que utiliza técnicas matemáticas e computacionais, fornecidas pelos Sistemas de Informação Geográfica (SIG), para tratar os processos que ocorrem no espaço geográfico. Isto estabelece de forma clara a relação interdisciplinar entre Cartografia e Geoprocessamento.

Uma razão histórica, que reforça o vínculo que aqui se discute, é a precedência das iniciativas de automação da produção cartográfica em relação aos esforços iniciais de concepção e construção das ferramentas de SIG (veja-se, por exemplo, Maguire et al. (1991)). A figura 1 aproveita e sintetiza a discussão ora apresentada, estendendo-a apropriadamente às áreas de Sensoriamento Remoto, CAD (Computer Aided Design) e Gerenciamento de Banco de Dados.

Figura 1 - Relações interdisciplinares entre SIG e outras áreas. FONTE: Maguire et al. (1991)

Introdução à Ciência da Geoinformação6-2

Cartografia para Geoprocessamento

O vínculo entre Cartografia e Geoprocessamento é explorado de forma prática neste documento através de uma apresentação do que há de essencial quanto à natureza dos dados espaciais. Complementa-se o assunto pela exposição de aspectos funcionais e de apresentação presentes em SIG, que coincidem com aqueles oriundos de preocupações eminentemente cartográficas com respeito a dados espaciais.

Dados espaciais caracterizam-se especificamente pelo atributo da localização geográfica. Há outros fatores importantes inerentes aos dados espaciais, mas a localização é preponderante. Um objeto qualquer (como uma cidade, a foz de um rio ou o pico de uma montanha) somente tem sua localização geográfica estabelecida quando se pode descrevêlo em relação a outro objeto cuja posição seja previamente conhecida ou quando se determina sua localização em relação a um certo sistema de coordenadas.

O estabelecimento de localizações sobre a superfície terrestre sempre foi um dos objetos de estudo da Geodésia, ciência que se encarrega da determinação da forma e das dimensões da Terra. A seguir são apresentados alguns conceitos de Geodésia que desempenham um papel de extrema importância na área de Geoprocessamento.

6.2.1 CONCEITOS DE GEODÉSIA

A definição de posições sobre a superfície terrestre requer que a Terra possa ser tratada matematicamente. Para o geodesista a melhor aproximação dessa Terra matematicamente tratável é o geóide, que pode ser definido como a superfície equipotencial do campo da gravidade terrestre que mais se aproxima do nível médio dos mares. A adoção do geóide como superfície matemática de referência esbarra no conhecimento limitado do campo da gravidade terrestre. À medida que este conhecimento aumenta, cartas geoidais existentes são substituídas por novas versões atualizadas. Além disso, o equacionamento matemático do geóide é intrincado, o que o distancia de um uso mais prático. É por tudo isso que a Cartografia vale-se da aproximação mais grosseira aceita pelo geodesista: um elipsóide de revolução . Visto de um ponto situado em seu eixo de rotação, projeta-se como um círculo; visto a partir de uma posição sobre seu plano do equador, projeta-se como uma elipse, que é definida por um raio equatorial ou semi-eixo maior e por um achatamento nos pólos.

Neste ponto torna-se oportuno colocar o conceito de datum planimétrico. Começase com um certo elipsóide de referência, que é escolhido a partir de critérios geodésicos de adequação ou conformidade à região da superfície terrestre a ser mapeada (veja, por

Introdução à Ciência da Geoinformação6-3

Cartografia para Geoprocessamento exemplo, Snyder, 1987, para uma lista de elipsóides usados em diferentes países ou regiões). O próximo passo consiste em posicionar o elipsóide em relação à Terra real. Para isto impõe-se inicialmente a restrição de preservação do paralelismo entre o eixo de rotação da Terra real e o do elipsóide. Com esta restrição escolhe-se um ponto central (ou origem) no país ou região e se impõe, desta vez, a anulação do desvio da vertical, que é o ângulo formado entre a vertical do lugar no ponto origem e a normal à superfície do elipsóide. Fica definida então a estrutura básica para o sistema geodésico do país ou região: o datum planimétrico. Trata-se, portanto, de uma superfície de referência elipsoidal posicionada com respeito a uma certa região. Sobre esta superfície realizam-se as medições geodésicas que dão vida à rede geodésica planimétrica da região.

Um datum planimétrico é formalmente definido por cinco parâmetros: o raio equatorial e o achatamento elipsoidais e os componentes de um vetor de translação entre o centro da Terra real e o do elipsóide. Na prática, devido à incertezas na determinação do centro da Terra real, trabalha-se com translações relativas entre diferentes datuns planimétricos.

Dado um ponto sobre a superfície do elipsóide de referência de um certo datum planimétrico, a latitude geodésica é o ângulo entre a normal ao elipsóide, no ponto, e o plano do equador. A longitude geodésica é o ângulo entre o meridiano que passa no ponto e o meridiano origem (Greenwich, por convenção). Fala-se aqui da definição do sistema de paralelos e meridianos sobre a superfície elipsoidal do datum.

Outro conceito importante é o de datum vertical ou altimétrico. Trata-se da superfície de referência usada pelo geodesista para definir as altitudes de pontos da superfície terrestre. Na prática a determinação do datum vertical envolve um marégrafo ou uma rede de marégrafos para a medição do nível médio dos mares. Faz-se então um ajustamento das medições realizadas para definição da referência “zero” e adota-se um dos marégrafos como ponto de referência do datum vertical. No Brasil o ponto de referência para o datum vertical é o marégrafo de Imbituba, em Santa Catarina.

Um dos problemas típicos na criação da base de dados de um SIG aqui no Brasil tem sido a coexistência de dois sistemas geodésicos de referência: Córrego Alegre e SAD- 69. Algumas cartas topográficas referem-se à Córrego Alegre, que é o antigo datum planimétrico brasileiro, enquanto outras utilizam como referência o SAD-69, que é o atual datum planimétrico. Os usuários de SIG já estão relativamente acostumados a conviver com escolhas de projeção e seleções de datum sempre que precisam realizar entrada ou importação de dados, mas costumam ignorar que as coordenadas geográficas - na verdade, geodésicas - são definidas sobre a superfície de referência do datum selecionado e que, portanto, variam de datum para datum.

Introdução à Ciência da Geoinformação6-4

Cartografia para Geoprocessamento

Desfeito o mito da invariabilidade das coordenadas geodésicas, deve-se atentar para a magnitude das variações envolvidas. As diferenças entre Córrego Alegre e SAD-69, por exemplo, traduzem-se em discrepâncias de algumas dezenas de metros sobre a superfície do território brasileiro. Essas discrepâncias são negligenciáveis para projetos que envolvam mapeamentos em escala pequena, mas são absolutamente preponderantes para escalas maiores que 1:250.0 (d’Alge, 1999). É o caso, por exemplo, do monitoramento do desflorestamento na Amazônia brasileira, que usa uma base de dados formada a partir de algumas cartas topográficas na escala 1:250.0 vinculadas ao datum Córrego Alegre e outras vinculadas ao SAD-69.

O antigo datum planimétrico Córrego Alegre usa o elipsóide de Hayford, cujas dimensões sempre foram consideradas convenientes para a América do Sul. Atualmente, no entanto, o datum SAD-69 utiliza o elipsóide da União Astronômica Internacional (IAU), homologado em 1967 pela Associação Internacional de Geodésia, quando passou a se chamar elipsóide de Referência 1967.

A tabela 1 ilustra os parâmetros dos dois elipsóides empregados como figuras de referência para Córrego Alegre e SAD-69:

Tabela 1 - Parâmetros dos elipsóides da União Astronômica Internacional e Hayford

Introdução à Ciência da Geoinformação6-5

Cartografia para Geoprocessamento

6.3 SISTEMAS DE COORDENADAS

O usuário de SIG está acostumado a navegar em seus dados através de ferramentas simples como o apontamento na tela com o cursor e a subsequente exibição das coordenadas geográficas da posição indicada. Por trás da simplicidade aparente dessa ação, há algumas transformações entre diferentes sistemas de coordenadas que garantem a relação entre um ponto na tela do computador e as coordenadas geográficas. A figura 2 mostra alguns dos sistemas de referência mais importantes para Cartografia e SIG.

Figura 2 - Diferentes sistemas de coordenadas para Cartografia e SIG FONTE: Maguire et al. (1991)

Introdução à Ciência da Geoinformação6-6

Cartografia para Geoprocessamento

Sistema de coordenadas geográficas

É o sistema de coordenadas mais antigo. Nele, cada ponto da superfície terrestre é localizado na interseção de um meridiano com um paralelo. Num modelo esférico os meridianos são círculos máximos cujos planos contêm o eixo de rotação ou eixo dos pólos. Já num modelo elipsoidal os meridianos são elipses definidas pelas interseções, com o elipsóide, dos planos que contêm o eixo de rotação.

Meridiano de origem (também conhecido como inicial ou fundamental) é aquele que passa pelo antigo observatório britânico de Greenwich, escolhido convencionalmente como a origem (0°) das longitudes sobre a superfície terrestre e como base para a contagem dos fusos horários. A leste de Greenwich os meridianos são medidos por valores crescentes até +180°. A oeste, suas medidas decrescem até o limite de -180°.

Tanto no modelo esférico como no modelo elipsoidal os paralelos são círculos cujo plano é perpendicular ao eixo dos pólos. O Equador é o paralelo que divide a Terra em dois hemisférios (Norte e Sul) e é considerado como o pararelo de origem (0°). Partindo do equador em direção aos pólos tem-se vários planos paralelos ao equador, cujos tamanhos vão diminuindo até que se reduzam a pontos nos pólos Norte (+90°) e Sul (-90°).

Longitude de um lugar qualquer da superfície terrestre é a distância angular entre o lugar e o meridiano inicial ou de origem, contada sobre um plano paralelo ao equador. Latitude é a distância angular entre o lugar e o plano do Equador, contada sobre o plano do meridiano que passa no lugar.

Sistema Geocêntrico Terrestre

O sistema geocêntrico terrestre é um sistema cartesiano tridimensional com origem no centro da Terra, um eixo coincidente com o eixo de rotação da Terra, outros dois eixos jacentes no plano do equador e eixo primário amarrado ao meridiano de Greenwich. Tratase de um sistema de coordenadas muito importante para a transformação entre coordenadas geodésicas (se você ainda não se deu conta de que as coordenadas geodésicas, que você chama de geográficas, variam, leia outra vez a seção 2.1). A transformação de um datum planimétrico a outro é feita a partir das relações matemáticas entre coordenadas geodésicas e coordenadas geocêntricas terrestres, que são descritas a seguir assumindo que se usa um modelo esférico de raio R para a Terra (X, Y e Z denotam os eixos do sistema geocêntrico terrestre e ϕ e λ denotam, respectivamente, a latitude e a longitude geodésicas):

X = R.cosϕ.cosλϕ = arcsen (Z/R) Y = R.cosϕ.senλλ = arctan (Y/X) Z = R.senϕ

Introdução à Ciência da Geoinformação6-7

Cartografia para Geoprocessamento

Sistema de coordenadas planas ou cartesianas

O sistema de coordenadas planas, também conhecido por sistema de coordenadas cartesianas, baseia-se na escolha de dois eixos perpendiculares cuja interseção é denominada origem, que é estabelecida como base para a localização de qualquer ponto do plano. Nesse sistema de coordenadas um ponto é representado por dois números reais: um correspondente à projeção sobre o eixo x (horizontal) e outro correspondente à projeção sobre o eixo y (vertical).

O sistema de coordenadas planas é naturalmente usado para a representação da superfície terrestre num plano, ou seja, confunde-se com aquilo que se chama de sistema de coordenadas de projeção, como será visto e discutido na seção 2.3.

Sistema de coordenadas polares

Apesar de não aparecer de forma explícita para o usuário de SIG, o sistema de coordenadas polares merece menção por causa de sua utilização no desenvolvimento das projeções cônicas (veja seção 2.3). Trata-se de um sistema simples, de relação direta com o sistema de coordenadas cartesianas, que substitui o uso de um par de coordenadas (x,y) por uma direção e uma distância para posicionar cada ponto no plano de coordenadas. Por isso ele é tão conveniente para o estudo das projeções que se desenvolvem sobre cones. A relação com coordenadas cartesianas é apresentada a seguir (ρ e θ denotam, respectivamente, a distância do ponto à origem e o ângulo formado com o eixo x):

x = ρ.cosθθ = arctan(y/x) y = ρ.senθρ = (x2 + y2)1/2

Sistema de coordenadas de imagem (matricial)

Como descrito maiss adiante neste documento, a integração de Geoprocessamento com Sensoriamento Remoto depende do processo de inserção de imagens de satélite ou aéreas na base de dados do SIG. O georeferenciamento de imagens pressupõe uma relação estabelecida entre o sistema de coordenadas de imagem e o sistema de referência da base de dados. O sistema de coordenadas de imagem é, tradicionalmente, levógiro, com origem no canto superior esquerdo da imagem e eixos orientados nas direções das colunas e das linhas da imagem. Os valores de colunas e linhas são sempre números inteiros que variam de acordo com a resolução espacial da imagem. A relação com um sistema de coordenadas planas é direta e faz-se através da multiplicação do número de linhas e colunas pela resolução espacial.

Introdução à Ciência da Geoinformação6-8

Cartografia para Geoprocessamento

6.4 PROJEÇÕES CARTOGRÁFICAS

Todos os mapas são representações aproximadas da superfície terrestre. Isto ocorre porque não se pode passar de uma superfície curva para uma superfície plana sem que haja deformações. Por isso os mapas preservam certas características ao mesmo tempo em que alteram outras.

A elaboração de uma mapa requer um método que estabeleça uma relação entre os pontos da superfície da Terra e seus correspondentes no plano de projeção do mapa. Para se obter essa correspondência, utilizam-se os sistemas de projeções cartográficas. De um modo genérico, um sistema de projeção fica definido pelas relações apresentadas a seguir (x e y são as coordenadas planas ou de projeção e ϕ e λ são as coordenadas geográficas):

Há um número grande de diferentes projeções cartográficas, uma vez que há vários modos de se projetar os objetos geográficos que caracterizam a superfície terrestre sobre um plano. Consequentemente, torna-se necessário classificá-las de acordo com diversos aspectos com a finalidade de melhor estudá-las.

Classificação das projeções

(Parte 1 de 5)

Comentários