Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

fenomenos dos transportes aula 3, Notas de aula de Engenharia Mecânica

hahahahhah

Tipologia: Notas de aula

Antes de 2010

Compartilhado em 08/10/2009

ranndys-halice-7
ranndys-halice-7 🇧🇷

4

(4)

22 documentos

Pré-visualização parcial do texto

Baixe fenomenos dos transportes aula 3 e outras Notas de aula em PDF para Engenharia Mecânica, somente na Docsity! 3.2. CONDUÇÃO DE CALOR EM UMA PAREDE PLANA Consideremos a transferência de calor por condução através de uma parede plana submetida a uma diferença de temperatura. Ou seja, submetida a uma fonte de calor , de temperatura constante e conhecida, de um lado, e a um sorvedouro de calor do outro lado, também de temperatura constante e conhecida. Um bom exemplo disto é a transferência de calor através da parede de um forno, como pode ser visto na figura 3.5, que tem espessura L, área transversal A e foi construído com material de condutividade térmica k. Do lado de dentro a fonte de calor mantém a temperatura na superfície interna da parede constante e igual a T1 e externamente o sorvedouro de calor ( meio ambiente ) faz com que a superfície externa permaneça igual a T2. [ figura 3.5 ] Aplicado a equação de Fourier, tem-se: Fazendo a separação de variáveis, obtemos : ( eq. 3.4 ) Na figura 3.5 vemos que na face interna ( x=0 ) a temperatura é T1 e na face externa ( x=L ) a temperatura é T2. Para a transferência em regime permanente o calor transferido não varia com o tempo. Como a área transversal da parede é uniforme e a condutividade k é um valor médio, a integração da equação 3.4, entre os limites que podem ser verificados na figura 3.5, fica assim : → → ( eq. 3.5 ) Considerando que ( T1 - T2 ) é a diferença de temperatura entre as faces da parede ( T ), o fluxo de calor a que atravessa a parede plana por condução é : ( eq. 3.6 ) Para melhor entender o significado da equação 3.6 consideremos um exemplo prático. Suponhamos que o engenheiro responsável pela operação de um forno necessita reduzir as perdas térmicas pela parede de um forno por razões econômicas. Considerando a equação 3.6, o engenheiro tem, por exemplo, as opções listadas na tabela 3.1 : Tabela 3.1- Possibilidades para redução de fluxo de calor em uma parede plana. OBJETIVO VARIÁVEL AÇÃO k↓ trocar a parede por outra de menor condutividade térmica ↓ A↓ reduzir a área superficial do forno L↑ aumentar a espessura da parede ∆T↑ reduzir a temperatura interna do forno enômenos de Transporte PAGE 5 Trocar a parede ou reduzir a temperatura interna podem ações de difícil implementação; porém, a colocação de isolamento térmico sobre a parede cumpre ao mesmo tempo as ações de redução da condutividade térmica e aumento de espessura da parede. • Exercício 3.1. Um equipamento condicionador de ar deve manter uma sala, de 15 m de comprimento, 6 m de largura e 3 m de altura a 22 oC. As paredes da sala, de 25 cm de espessura, são feitas de tijolos com condutividade térmica de 0,14 Kcal/h.m.oC e a área das janelas podem ser consideradas desprezíveis. A face externa das paredes pode estar até a 40 oC em um dia de verão. Desprezando a troca de calor pelo piso e pelo teto, que estão bem isolados, pede-se o calor a ser extraído da sala pelo condicionador ( em HP ). OBS : 1 HP = 641,2 Kcal/h • Exercício 3.2. As superfícies internas de um grande edifício são mantidas a 20 oC, enquanto que a temperatura na superfície externa é -20 oC. As paredes medem 25 cm de espessura , e foram construidas com tijolos de condutividade térmica de 0,6 kcal/h m oC. a) Calcular a perda de calor para cada metro quadrado de superfície por hora. b) Sabendo-se que a área total do edifício é 1000 m2 e que o poder calorífico do carvão é de 5500 kcal/Kg, determinar a quantidade de carvão a ser utilizada em um sistema de aquecimento durante um período de 10 h. Supor o rendimento do sistema de aquecimento igual a 50%. 3.3. ANALOGIA ENTRE RESISTÊNCIA TÉRMICA E RESISTÊNCIA ELÉTRICA Dois sistemas são análogos quando eles obedecem a equações semelhantes. Isto significa que a equação de descrição de um sistema pode ser transformada em uma equação para outro sistema pela simples troca dos símbolos das variáveis. Por exemplo, a equação 3.6 que fornece o fluxo de calor através de uma parede plana pode ser colocada na seguinte forma : ( eq. 3.7 ) O denominador e o numerador da equação 3.7 podem ser entendidos assim : ( T ) , a diferença entre a temperatura da face quente e da face fria, consiste no potencial que causa a transferência de calor enômenos de Transporte PAGE 5 metade inferior de refratário especial ( condutividade k2 ) e uma metade superior de refratário comum ( condutividade k1 ), como mostra a figura 3.8. Faremos as seguintes considerações : Todas as paredes estão sujeitas a mesma diferença de temperatura; As paredes podem ser de materiais e/ou dimensões diferentes; O fluxo de calor total é a soma dos fluxos por cada parede individual. [ figura 3.8 ] O fluxo de calor que atravessa a parede composta pode ser obtido em cada uma das paredes planas individualmente : ( eq. 3.14 ) O fluxo de calor total é igual a soma dos fluxos da equação 3.14 : ( eq. 3.15 ) A partir da definição de resistência térmica para parede plana ( equação 3.7 ), temos que : ( eq. 3.16 ) Substituindo a equação 3.16 na equação 3.15, obtemos : Portanto, para o caso geral em que temos uma associação de n paredes planas associadas em paralelo o fluxo de calor é dado por : ( eq. 3.17 ) Em uma configuração em paralelo, embora se tenha transferência de calor bidimensional, é freqüentemente razoável adotar condições unidimensionais. Nestas condições, admite-se que as superfícies paralelas à direção x são isotérmicas. Entretanto, a medida que a diferença entre as condutividades térmicas das paredes ( k1 - k2 ) aumenta, os efeitos bidimensionais tornam-se cada vez mais importantes. • Exercício 3.3. Calcular o fluxo de calor na parede composta abaixo : onde, material a b c d e f g k (Btu/h.ft.oF) 100 40 10 60 30 40 20 enômenos de Transporte PAGE 5 • Exercício 3.4. Uma parede de um forno é constituída de duas camadas : 0,20 m de tijolo refratário (k = 1,2 kcal/h.m.oC) e 0,13 m de tijolo isolante (k = 0,15 kcal/h.m.oC). A temperatura da superfície interna do refratário é 1675 oC e a temperatura da superfície externa do isolante é 145 oC. Desprezando a resistência térmica das juntas de argamassa, calcule : a) o calor perdido por unidade de tempo e por m2 de parede; b) a temperatura da interface refratário/isolante. • Exercício 3.5. Obter a equação para o fluxo de calor em uma parede plana na qual a condutividade térmica ( k ) varia com a temperatura de acordo com a seguinte função : k = a + b.T 3.6. CONDUÇÃO DE CALOR ATRAVÉS DE CONFIGURAÇÕES CILÍNDRICAS Consideremos um cilindro vazado submetido à uma diferença de temperatura entre a superfície interna e a superfície externa, como pode ser visto na figura 3.9. Se a temperatura da superfície interna for constante e igual a T1, enquanto que a temperatura da superfície externa se mantém constante e igual a T2, teremos uma transferência de calor por condução no regime permanente. Como exemplo analisemos a transferência de calor em um tubo de comprimento L que conduz um fluido em alta temperatura : O fluxo de calor que atravessa a parede cilíndrica poder ser obtido através da equação de Fourier, ou seja : ( eq. 3.18 ) Para configurações cilíndricas a área é uma função do raio : ( eq. 3.19 ) Levando a equação 3.19 na equação 3.18, obtemos : Fazendo a separação de variáveis e integrando entre T1 em r1 e T2 em r2, conforme mostrado na figura 3.9, chega-se a : → → Aplicando-se propriedades dos logaritmos, obtemos : enômenos de Transporte PAGE 5 O fluxo de calor através de uma parede cilíndrica será então : ( eq. 3.20 ) Para melhor entender o significado da equação 3.20 consideremos um exemplo prático. Suponhamos que o engenheiro responsável pela operação de uma caldeira necessita reduzir o consumo energético através da redução das perdas térmicas na tubulação que conduz vapor até uma turbina. Considerando a equação 3.20, o engenheiro tem as seguintes opções listadas na tabela 3.2 : Tabela 3.2 - Possibilidades para redução de fluxo de calor em uma parede cilíndrica. OBJETIVO VARIÁVEL AÇÃO k↓ trocar a parede cilíndrica por outra de menor condutividade térmica ↓ L↓ reduzir o comprimento da tubulação ( menor caminho ) ()↑ aumentar a espessura da parede cilíndrica ∆T↓ reduzir a temperatura do vapor Trocar a parede ou reduzir a temperatura do vapor podem ações de difícil implementação; porém, a colocação de isolamento térmico sobre a parede cilíndrica cumpre ao mesmo tempo as ações de redução da condutividade térmica e aumento de espessura da parede. • Resistência térmica na parede cilíndrica : O conceito de resistência térmica também pode ser aplicado à parede cilíndrica. Devido à analogia com a eletricidade, um fluxo de calor na parede cilíndrica também pode ser representado como : Então para a parede cilíndrica, obtemos : ( eq. 3.21 ) Eliminado o ∆T na equação 3.21, obtemos a resistência térmica de uma parede cilíndrica : ( eq. 3.22 ) Para o caso geral em que temos uma associação de paredes n cilíndricas associadas em paralelo, por analogia com paredes planas, o fluxo de calor é dado por : ( eq. 3.23 ) • Exercício 3.6. Um tubo de aço (k=22 Btu/h.ft.oF) de 1/2" de espessura e 10" de diâmetro externo é utilizado para conduzir ar aquecido. O tubo é isolado com 2 camadas de materiais isolantes : a primeira de isolante de alta temperatura (k=0,051 Btu/h.ft.oF) com espessura de 1" e a segunda enômenos de Transporte PAGE 5 ( eq. 3.29 ) • Exercício 3.7. Um tanque de aço ( k = 40 Kcal/h.m.oC ), de formato esférico e raio interno de 0,5 m e espessura de 5 mm, é isolado com 1½" de lã de rocha ( k = 0,04 Kcal/h.m.oC ). A temperatura da face interna do tanque é 220 oC e a da face externa do isolante é 30 oC. Após alguns anos de utilização, a lã de rocha foi substituída por outro isolante, também de 1½" de espessura, tendo sido notado então um aumento de 10% no calor perdido para o ambiente ( mantiveram-se as demais condições ). Determinar : a) fluxo de calor pelo tanque isolado com lã de rocha; b) o coeficiente de condutividade térmica do novo isolante; c) qual deveria ser a espessura ( em polegadas ) do novo isolante para que se tenha o mesmo fluxo de calor que era trocado com a lã de rocha. • Exercício 3.8. Um tanque de oxigênio líquido tem diâmetro de 1,20 m, um comprimento de 6 m e as extremidades hemisféricas. O ponto de ebulição do oxigênio é -182,8 oC. Procura-se um isolante térmico que reduza a taxa de evaporação em regime permanente a não mais que 10 Kg/h. O calor de vaporização do oxigênio é 51,82 Kcal/Kg. Sabendo que a temperatura ambiente varia entre 15 oC (inverno) e 40 oC (verão) e que a espessura do isolante não deve ultrapassar 75 mm, qual deverá ser a condutividade térmica do isolante ? ( Obs : não considerar as resistências devido à convecção ). • Exercício 3.9. A parede de um forno industrial é composta com tijolos refratários ( k = 0,3 Btu/ h.ft.oF ) por dentro, e tijolos isolantes por fora ( k = 0,05 Btu/h.ft.oF ). A temperatura da face interna do refratário é 1600 oF e a da face externa do isolante é 80 oF. O forno tem formato de prisma retangular ( 8,0 X 4,5 X 5,0 ft ) e a espessura total da parede é 1,3 ft. Considerando uma perda de calor de 36000 Btu/h apenas pelas paredes laterais, pede-se : a) a espessura de cada um dos materiais que compõem a parede; enômenos de Transporte PAGE 5 b) colocando-se uma janela de inspeção circular de 0,5 ft de diâmetro, feita com vidro refratário de 6" de espessura ( k = 0,65 Btu/h.ft.oF ) em uma das paredes do forno, determinar o novo fluxo de calor c) qual deveria ser a espessura dos tijolos isolantes, no caso do item anterior, para que o fluxo de calor fosse mantido em 36000 Btu/h. • Exercício 3.10. Uma camada de material refratário ( k=1,5 kcal/h.m.oC ) de 50 mm de espessura está localizada entre duas chapas de aço ( k = 45 kcal/h.moC ) de 6,3 mm de espessura. As faces da camada refratária adjacentes às placas são rugosas de modo que apenas 30 % da área total está em contato com o aço. Os espaços vazios são ocupados por ar ( k=0,013 kcal/h.m.oC ) e a espessura média da rugosidade de 0,8 mm. Considerando que as temperaturas das superfícies externas da placa de aço são 430 oC e 90 oC, respectivamente; calcule o fluxo de calor que se estabelece na parede composta. OBS : Na rugosidade, o ar está parado (considerar apenas a condução) enômenos de Transporte PAGE 5
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved