Review sobre SAMs

Review sobre SAMs

(Parte 3 de 3)

Pd/Ni hybrid magnetic nanofibres. Chem. Mater. 17, 6053–6059 (2005). 57. Duxin, N., Liu, F. T., Vali, H. & Eisenberg, A. Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates. J. Am. Chem. Soc. 127, 10063–10069 (2005). 58. Kellermann, M. et al. The first account of a structurally persistent micelle.

Angew. Chem. Int. Ed. 43, 2959–2962 (2004). 59. Sadasivan, S., Dujardin, E., Li, M., Johnson, C. J. & Mann, S. DNA- driven assembly of mesoporous silica/gold satellite nanoparticles. Small 1, 103–106 (2005). 60. Mirkin, C. A., Letsinger, R. L., Mucic, R, C. & Storhoff, J. J. DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). 61. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001). 62. Li, M., Dujardin, E. & Mann, S. Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chem. Commun. 4952–4954 (2005). 63. Ishii, D. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003). 64. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003). 65. Medalsy, I et al. SP1 protein-based nanostructures and arrays. Nano Lett. 8, 473–477 (2008). 6. Gottlieb, D., Morin, S. A., Jin, S. & Raines, R. T. Self-assembled collagenlike peptide fibres as templates for metallic nanowires. J. Mater. Chem. 18, 3865–3870 (2008).

67. Wang, Q., Lin, T., Tang, L., Johnson, J. E. & Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. 41, 459–462 (2002). 68. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002). 69. Patolsky, F., Weizmann, Y. & Willner, I. Actin-based metallic nanowires as bio-nanotransporters. Nature Mater. 3, 692–695 (2004). 70. Grybowski,B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M.

Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009). 71. Sun, J. et al. Core-controlled polymorphism in virus-like particles.

Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007). 72. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond lattice. Science 312, 420–424 (2006). 73. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008). 74. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008). 75. Tlusty, T. & Safran, S. A. Defect-induced phase separation in dipolar fluids.

Science 290, 1328–1331 (2000). 76. Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single

CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002). 7. Lin, S., Li, M., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553–2559 (2005). 78. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007). 79. Adams, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998). 80. Nikoobakht, B., Wang, Z. L. & El-Sayed, M. A. Self-assembly of gold nanorods.

J. Phys. Chem. B 104, 8635–8640 (2000). 81. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001). 82. Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999). 83. Nie, Z. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Mater. 6, 609–614 (2007). 84. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006). 85. Patil, A. J., Vickery, J. L., Scott, T. B. & Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21, 3159–3164 (2009). 86. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999). 87. Coelfen, H. & Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 4, 5576–5591 (2005). 8. Coelfen, H. & Mann, S. Higher-order organization by mesoscale selfassembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003). 89.Mann, S. The chemistry of form. Angew. Chem. Int. Ed. 39, 3392–3406 (2000). 90.Simon, P. et al. On the real-structure of biomimetically grown hexagonal prismatic seeds of fluorapatite-gelatine-composites: TEM investigations along [001]. J. Mater. Chem. 14, 2218–2224 (2004). 91. Yu, S.-H., Coelfen, H., Tauer, K. & Antonietti, M. Tectonic arrangement of

BaCO nanocrystals into helices induced by a racemic block copolymer. Nature Mater. 4, 51–5 (2005). 92. Wang, T. X., Coelfen, H. & Antonietti, M. Nonclassical crystallization: mesocrystals and morphology change of CaCO crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 127, 3246–3247 (2005). 93. Busch, S. et al. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur. J. Inorg. Chem. 1643–1653 (1999). 94. Ball, P. The Self‑Made Tapestry: Pattern Formation in Nature (Oxford Univ.

Press, 1999). 95. Li, M. & Mann, S. Emergent hybrid nanostructures based on non-equilibrium block copolymer self-assembly. Angew. Chem. Int. Ed. 47, 9476–9479 (2008). 96. Backov, R. Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Matter 2, 452–464 (2006). 97. Chandrappa, G. T., Steunou, N. & Livage, J. Macroporous crystalline vanadium oxide foam. Nature 416, 702 (2002). 98. Walsh, D. et al. Preparation of higher-order zeolite materials using dextran templating. Angew. Chem. Int. Ed. 43, 6691–6695 (2004).

792 nature materials | VOL 8 | OCTOBER 2009 |

9. Grzybowski, B. A., Bishop, K. J. M., Campbell, C. J., Fialkowski, M. &

Smoukov, S. K. Micro- and nanotechnology via reaction-diffusion. Soft Matter 1, 114–128 (2005). 100. Nicolis, G. & Prigogine, I. Self‑Organization in Nonequilibrium Systems ‑ From

Dissipative Structures to Order Through Fluctuations (Wiley, 1977). 101. Haase, C. S., Chadam, J., Feinn, D. & Ortoleva, P. Oscillatory zoning in plagioclase feldspar. Science 209, 272–274 (1980). 102. Short, M. B. et al. Stalactite growth as a free-boundary problem: a geometric law and its platonic ideal. Phys. Rev. Lett. 94, 18501 (2005). 103. Tabor, Z., Rokita, E. & Cichocki, T. Origin of the pattern of trabecular bone: an experiment and a model. Phys. Rev. E 6, 51906 (2002). 104. Liesegang, R. E. Uber einige Eigenschaften von Gallerten. Naturwiss. Wochenschr. 1, 353–362 (1896). 105. Devon, R., RoseFigura, J., Douthat, D., Kudenov, J. & Maselko, J. Complex morphology in a simple chemical system. Chem. Commun. 1678–1680 (2005). 106. Collins, A. M., Carriazo, D., Davis, S. A & Mann, S. Spontaneous template-free assembly of ordered macroporous titania. Chem Commun. 568–569 (2004). 107. Leonard, A. & Su, B. L. A novel and template-free method for the spontaneous formation of aluminosilicate macro-channels with mesoporous walls. Chem. Commun. 1674–1675 (2004). 108. Deng, W. H. & Shanks, B. H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chem. Mater. 17, 3092–3100 (2005). 109. Henisch, H. K. Crystals in Gels and Liesegang Rings (Cambridge Univ.

Press, 1988). 110. Mueller, K. F. Periodic interfacial precipitation in polymer films. Science 225, 1021–1027 (1984). 111Bitner, A., Fialkowski, M., Smoukov, S. K., Campbell, C. J. & Grzybowski, B. A.

Amplification of changes of a thin film’s macromolecular structure into macroscopic reaction−diffusion patterns. J. Am. Chem. Soc. 127, 6936–6937 (2005). 112. Sugawara, A., Ishii, T. & Kato, T. Self-organized calcium carbonate with regular surface-relief structures. Angew. Chem. Int. Ed. 42, 5299–5303 (2003). 113. Imai, H., Tatar, S., Furuichi, K. & Oaki, Y. Formation of calcium phosphate having a hierarchically laminated architecture through periodic precipitation in organic gel. Chem. Commun. 1952–1953 (2003). 114. Voinescu, A. E. et al. Inorganic self-organized silica aragonite biomorphic composites. Cryst. Growth Des. 8, 1515–1521 (2008). 115. Yu, J., Guo, H., Davis, S. A. & Mann, S. Fabrication of monodisperse calcium carbonate hollow microspheres by chemically induced self-transformation. Adv. Funct. Mater. 16, 2035–2041 (2006). 116. Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 16, 649–662 (2006). 117. Oaki, Y. & Imai, H. Hierarchically organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes:

a model approach towards suprabiomineral materials. Adv. Funct. Mater. 15, 1407–1414 (2005). 118. Li, M., Coelfen, H. & Mann, S. Morphological control of BaSO microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem. 14, 2269–2276 (2004). 119. Viravaidya, C., Li, M. & Mann, S. Microemulsion-based synthesis of stacked calcium carbonate (calcite) superstructures. Chem Commun. 2182–2183 (2004). 120. Xing, Y., Li, M., Davis, S. A. & Mann, S. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. J. Phys. Chem. 110, 1–1113 (2006). 121. Aisenberg, J., Miller, D. A., Grazul, J. L. & Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003). 122. Nakanishi, T. et al. Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3, 2019–2023 (2007). 123. Garcia-Ruiz, J. M., Melero-Gracia, E. & Hyde, S. T. Morphogenesis of selfassembled nanocrystalline materials of barium carbonate and silica. Science 323, 362–365 (2009). 124. Escudero, C., Crusats, J., Diez-Perez, I., El-Hachemi, Z. & Ribó, J. Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris (4-sulphophenyl)porphyrin. Angew. Chem. Int. Ed. 45, 8032–8035 (2006). 125. Hopwood, J. D. & Mann, S. Synthesis of barium sulphate nanoparticles and nanofilaments in reverse micelles and microemulsions. Chem. Mater. 9, 1819–1828 (1997). 126. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled selfassembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007). 127. Bruinsma, R. F., Gelbart, W. M., Reguera, D., Rudnick, J. & Zandi, R.

Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90, 248101 (2003). 128. Israelachvili, J. Intermolecular & Surface Forces (Academic Press, 1991). 129. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials

Chemistry (Oxford Univ. Press, 2001). 130. Lee, S. Y., Royston, E., Culver, J. & Harris, M. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template. Nanotechnology 16, S435–S441 (2005). 131. Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002). 132. Grzybowski, B. A. & Campbell, C. J. Complexity and dynamic self-assembly.

Chem. Eng. Sci. 59, 1667–1676 (2004). 133. Cross, M. C. & Hohenberg, P. C. Pattern formation out of equilibrium.

Rev. Mod. Phys. 65, 851–1112 (1993). 134. Kurin-Csorgei, K., Epstein, I. R. & Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 433, 139–142 (2005).

(Parte 3 de 3)