8

Sumário

Sumário 1

1. INTRODUÇÃO 2

2. CARGAS ELÉTRICAS 2

3. CORRENTE ELÉTRICA 2

4. ELETROMAGNETISMO 3

4.1 Campos magnéticos 3

4.2 Correntes e eletromagnetismo 4

4.3 Permeabilidade 4

4.4 Indutância 5

4.5 Campos e forças 5

5. GERADOR MECÂNICO DE ENERGIA ELÉTRICA 6

6. CONCLUSÃO 8

7. REFERÊNCIAS 8

1. INTRODUÇÃO

Michael Faraday, no século XIX, em um de seus experimentos usou uma espira enrolada em uma haste de ferro e dois imãs em forma de barra para demonstrar que os imãs, por si sós, podiam produzir uma corrente. Com base nas teorias sobre corrente elétrica e eletromagnetismo este trabalho tem como objetivo fazer um breve estudo sobre os temas citados e aplicá-los em uma atividade prática que será demonstrada e explicada em sala de aula.

2. CARGAS ELÉTRICAS

Um objeto tem carga negativa se nele há um número maior de elétrons e positiva se há um número menor de elétrons em relação ao número de prótons. A quantidade de carga elétrica é determinada por esta diferença entre o número de prótons e o número de elétrons. A carga elétrica de um corpo é representada pela letra Q, expresso pela unidade coulomb (C). A carga de um coulomb negativo significa que o corpo contém uma carga de 6,25 x 1018 mais elétrons do que prótons.

3. CORRENTE ELÉTRICA

Corrente (I) é simplesmente o fluxo de elétrons. Essa corrente é produzida pelo deslocamento de elétrons através de uma d.d.p em um condutor. A unidade fundamental de corrente é o ampère (A). 1 A é o deslocamento de 1 C através de um ponto qualquer de um condutor durante 1s. I=Q/t

O fluxo real de elétrons é do potencial negativo para o positivo. No entanto, é convenção representar a corrente como indo do positivo para o negativo.

4. ELETROMAGNETISMO

É o estudo dos campos magnéticos e suas interações com as correntes elétricas.

4.1 Campos magnéticos

Os elétrons giram em torno do núcleo dos átomos, mas também em torno de sí mesmos (translação), isto é semelhante ao que ocorre com os planetas e o sol. Há diversas camadas de elétrons, e em cada uma, os elétrons se distribuem em orbitais, regiões onde executam a rotação, distribuídos aos pares.

Ao rodarem em torno de sí, os elétrons da camada mais externa produzem um campo magnético mínimo, mas dentro do orbital, o outro elétron do par gira também, em sentido oposto, cancelando este campo, na maioria dos materiais.

Porém nos materiais imantados (ferromagnéticos) há regiões, chamadas domínios, onde alguns dos pares de elétrons giram no mesmo sentido, e um campo magnético resultante da soma de todos os pares e domínios é exercido em volta do material: são os imãs.

A palavra campo significa, na Física, uma tendência de influenciar corpos ou partículas no espaço que rodeia uma fonte.

Ex.: O campo gravitacional, próximo à superfície de um planeta, que atrai corpos, produzindo uma força proporcional à massa destes, o peso.

Assim, o campo magnético é a tendência de atrair partículas carregadas, elétrons e prótons, e corpos metálicos magnetizáveis (materiais ferromagnéticos, como o ferro, o cobalto, o níquel e ligas como o alnico).

O campo pode ser produzido pôr imãs e eletroimãs, que aproveitam o efeito magnético da corrente elétrica.

4.2 Correntes e eletromagnetismo

A corrente elétrica num condutor produz campo magnético em torno dele, com intensidade proporcional à corrente e inversamente à distância.

B = 4p10-7 I / r

Nesta equação, válida para um condutor muito longo, I é a corrente, r a distância ao centro do condutor e B é a densidade de fluxo, ou indução magnética, que representa o campo magnético. É medida em Tesla, T.

Se enrolarmos um condutor, formando um indutor ou bobina, em torno de uma forma, o campo magnético no interior deste será a soma dos produzidos em cada espira, e tanto maior quanto mais espiras e mais juntas estiverem.

B = 4p10-7NI / L

L é o comprimento do enrolamento, e N o número de espiras, válida para núcleo de ar.

4.3 Permeabilidade

Os materiais se comportam de várias maneiras, sob campos magnéticos.

Os diamagnéticos, como o alumínio e o cobre, os repelem, afastando as linhas de campo.

Os paramagnéticos se comportam quase como o ar.

Os ferromagnéticos concentram o campo, atuando como condutores magnéticos.

A permeabilidade é a propriedade dos materiais de permitir a passagem do fluxo magnético, que é a quantidade de campo que atravessa o material. f = BA

A é a área transversal ao campo do material, em m2 . O fluxo é medido em Webers, Wb.

Os materiais mais permeáveis são os ferromagnéticos. Eles tem permeabilidades centenas a vários milhares de vezes a do ar, e são usados como núcleos de indutores, transformadores, motores e geradores elétricos, sempre concentrando o fluxo, possibilitando grandes campos (e indutâncias).

Os diamagnéticos são usados como blindagem magnética (ou às ondas eletromagnéticas), pela permeabilidade menor que a do ar, mo.

mo = 4p10-7 Tm/A

4.4 Indutância

Vimos que os indutores produzem campo magnético ao conduzirem correntes. A indutância é a relação entre o fluxo magnético e a corrente que o produz. É medida em Henry, H.

L = f / I

Uma propriedade importante da indutância, e da qual deriva o nome, é o fato do campo resultante da corrente induzir uma tensão no indutor que se opõe à corrente, esta é chamada a Lei de Faraday.

E = N df / dt

N é o número de espiras do indutor, e df / dt é a velocidade de variação do fluxo, que no caso de CA é proporcional à freqüência. E é a tensão induzida, em V.

É interessante observar como isto se relaciona ao conceito de reatância indutiva, a oposição à passagem de corrente pelo indutor.

XL = 2 pfL

L é a indutância, e f a freqüência da corrente, em Hz.

A corrente alternada produz no indutor um campo, induzindo uma tensão proporcional à freqüência, que se opõe à corrente, reduzindo-a, esta é a explicação da reatância.

As bobinas nos circuitos elétricos são chamadas indutores. Quando usadas para produzir campos magnéticos, chamam-se eletroimãs ou solenóides. Já dentro de máquinas elétricas (motores e geradores), fala-se em enrolamentos.

4.5 Campos e forças

Um campo magnético produz uma força sobre cargas elétricas em movimento, que tende a fazê-las girar. Quando estas cargas deslocam-se em um condutor, este sofre a ação de uma força perpendicular ao plano que contém o condutor e o campo.

F = B I L senq

F é a força em Newtons, L o comprimento do condutor, em m, e q o ângulo entre o condutor e as linhas do campo.

É esta força que permite a construção dos motores elétricos. Nestes o ângulo é de 90º, para máximo rendimento, B é produzido pelos enrolamentos, e há N espiras (nos casos em que o rotor, parte rotativa central, é bobinado), somando-se as forças produzidas em cada uma. O núcleo é de material ferromagnético, para que o campo seja mais intenso, e envolve o rotor, com mínima folga, o entreferro, formando um circuito magnético.

O processo é reversível: uma força aplicada a um condutor, movendo-o de modo a "cortar" as linhas de um campo magnético (perpendicularmente), induz uma tensão neste, conforme a Lei de Faraday, proporcional à velocidade e ao comprimento do condutor, e ao campo, é o princípio do gerador elétrico e do microfone dinâmico.

E = B L v

E é a tensão em V, L o comprimento, em m, e v a velocidade do condutor, em m/s.

Além desta força, há a de atração exercida pôr um campo num material ferromagnético, que age orientando os domínios (e os "spins"), podendo imantá-los (conforme a intensidade e a duração). Esta é usada nos eletroimãs, nos relés e contatores (relés de potência usados em painéis de comando de motores), etc.

É também usada na fabricação de imãs, usados entre outras aplicações nos auto-falantes, microfones e pequenos motores C.C. (campo), como aqueles usados em toca - discos e gravadores.

5. GERADOR MECÂNICO DE ENERGIA ELÉTRICA

Todo dispositivo cuja finalidade é produzir energia elétrica à custa de energia mecânica constitui uma máquina geradora de energia elétrica (diz-se também, impropriamente, máquina geradora de eletricidade --- eletricidade não é uma grandeza física, é um ramo da Física). 

O funcionamento dessas máquinas se baseia ou em fenômenos eletrostáticos (como no caso do gerador Van de Graaff), ou na indução eletromagnética (como no caso do disco de Faraday). Nas aplicações industriais a energia elétrica provém quase exclusivamente de geradores mecânicos cujo princípio é o fenômeno da indução eletromagnética (e dos quais o disco de Faraday é um simples precursor); os geradores mecânicos de corrente alternante são também denominados alternadores; os geradores mecânicos de corrente contínua são também denominados dínamos. Vale, desde já, notar que: "dínamo" de bicicleta não é dínamo e sim 'alternador'.

Numa máquina elétrica (seja gerador ou motor), distinguem-se essencialmente duas partes, a saber: o estator, conjunto de órgãos ligados rigidamente à carcaça e o rotor, sistema rígido que gira em torno de um eixo apoiado em mancais fixos na carcaça. Sob ponto dê vista funcional distinguem-se o indutor, que produz o campo magnético, e o induzido que engendra a corrente induzida.

No dínamo o rotor é o induzido e o estator é o indutor; nos alternador dá-se geralmente o contrario. 

A corrente induzida produz campo magnético que, em acordo com a Lei de Lenz, exerce forças contrárias à rotação do rotor; por isso em dínamos e alternadores, o rotor precisa ser acionado mecanicamente. O mesmo concluímos do Princípio de Conservação da Energia: a energia elétrica extraída da máquina, acrescida de eventuais perdas, é compensada por suprimento de energia mecânica.

Abaixo temos a foto de um alternador elementar/didático onde o rotor é um ímã permanente (cuja rotação gera a variação de fluxo) e o estator é uma bobina dotada de núcleo de ferro em U. A rotação do ímã permanente é conseguida mediante um barbante que deve ser enrolado no eixo (entre as pernas do U de cobre, mancal do eixo) e a seguir puxado. A pequena lâmpada de lanterna de 1,5 V vista nessa foto poderá ser substituída por um LED (diodo emissor de luz).

Figura 1 - alternador elementar/didático

Nos alternadores de grande porte, o estator é induzido (onde se recolhe a corrente alternante) e o rotor é indutor (geralmente são eletroímãs alimentados por corrente contínua, por meio de anéis coletores).

Nos geradores tipo alternadores (como o ilustrado acima) um artifício simples permite retificar a corrente, ou seja, fazer com que fluam sempre num mesmo sentido.

Nos instantes em que o fluxo de indução no rotor é máximo ou mínimo a corrente induzida é nula. Tal corrente, cuja intensidade varia periodicamente mas cujo sentido se conserva, é denominada corrente pulsante.

6. CONCLUSÃO

Com base nesses estudos realizou-se a montagem de um gerador mecânico de energia elétrica para comprovar as teorias citadas neste trabalho.

7. REFERÊNCIAS

HEWITT, Paul G. Física conceitual. Porto Alegre: Bookman, 2002.

Comentários