Comandos Elétricos Industriais

Comandos Elétricos Industriais

(Parte 2 de 5)

Figura 12 – Interior de um disjuntor QUICK LEG. .

Figura 13 – Interior e gráfico de um disjuntor industrial 3WN. 15

Figura 14 – Interior e gráfico de um disjuntor de motores 3VL. 16

Figura 15 – Interior e gráfico de um disjuntor 5SX 17

1.5 CARACTERÍSTICAS COMPARATIVAS FUSÍVEL-DISJUNTOR.

Disjuntor e fusível exercem basicamente a mesma função: ambos têm como maior e mais difícil tarefa, interromper a circulação da corrente de curtocircuito, mediante a extinção do arco que se forma. Esse arco se estabelece entre as peças de contato do disjuntor ou entre as extremidades internas do elemento fusível. Em ambos os casos, a elevada temperatura que se faz presente leva a uma situação de risco que podemos assim caracterizar:

• A corrente de curto-circuito (Ik) é a mais elevada das correntes que pode vir a circular no circuito, e como é bem superior à corrente nominal, só pode ser mantida por um tempo muito curto, sob pena de danificar ou mesmo destruir componentes de um circuito. Portanto, o seu tempo de desligamento deve ser extremamente curto.

• Essa corrente tem influência tanto térmica (perda joule) quanto eletrodinâmica, pelas forças de repulsão que se originam quando essa corrente circula entre condutores dispostos em paralelo, sendo por isso mesmo, fator de dimensionamento da seção condutora de cabos.

• O seu valor é calculado em função das condições de impedância do sistema, e é por isso variável nos diversos pontos de um circuito. De qualquer modo, representa em diversos casos até algumas dezenas de quilo-ampéres que precisam ser manobrados, seja pela atuação de um fusível, seja pelo disparo por um relé de curto-circuito que ativa o mecanismo de abertura dos contatos do disjuntor.

• Entretanto, existem algumas vantagens no uso do fusível, e outras usando disjuntor. Vejamos a tabela comparativa, perante a corrente de curto-circuito Ik.

Tabela 1 – Diferenças entre fusíveis e disjuntores 18

A confiabilidade de operação do fusível ou disjuntor é assegurada pela conformidade das normas vigentes e referências do fabricante quanto as condições de operação e controle, podemos traçar um paralelo entre disjuntor e fusível, como segue:

Tabela 2 – Diferenças entre fusíveis e disjuntores 19

2 DISPOSITIVOS DE COMANDOS

A compreensão de um sistema de acionamento e proteção merece muita atenção, pois dela dependem a durabilidade do sistema e o funcionamento correto dos equipamentos a serem acionados. Os dispositivos de comandos ou chaves, empregados em circuitos elétricos de baixa tensão, são dos tipos mais variados e com características de funcionamento bem distintas. Essa diversidade é conseqüência das funções específicas que cada dispositivo deve executar, dependendo de sua posição no circuito. Um dos critérios mais utilizados é o que classifica as chaves segundo sua capacidade de ruptura, isto é, da corrente ou potência que as mesmas são capazes de comandar.

2.1 CHAVE DE PARTIDA DIRETA MANUAL (CHAVE FACA)

É o método mais simples, em que não são empregados dispositivos especiais de acionamento. A chave de comando direto existe em grande número de modelos e diversas capacidades de corrente, sendo a chave faca a mais simples. Para uma maior segurança são utilizadas apenas para comandar equipamentos de pequenas correntes. Ex. Motores sem carga (a vazio), circuitos de sinalização e dispositivos de baixa potência.

Figura 16 – Chave de Partida direta manual tri polar ou chave faca tri polar. 20

NA NFsímbolos

A base é isolante e normalmente feita de mármore, as chaves podem ser simples (vide figura 13) ou com reversão, nesse caso existe mais um banco de bornes na parte inferior. Por representar riscos ao operador seu uso é restrito e deve ser evitado.

Chave: É também denominado contato. Tem a função de conectar e desconectar dois pontos de um circuito elétrico. A chave tem dois terminais: um deve ser ligado à fonte (ou gerador) e outro ligado à carga (ou receptor). É feita de metal de baixa resistência elétrica para não atrapalhar a passagem de corrente e alta resistência mecânica, de modo a poder ligar e desligar muitos milhares de vezes. A estrutura metálica tem área de secção transversal proporcional à corrente que comandam: quanto maior for a corrente que se deseja comandar, maiores são as superfícies de contato e maior a chave. O valor de corrente a ser comandada também influencia na pressão de contato entre as partes móveis do contato: maiores correntes exigem maiores pressões de contato para garantir que a resistência no ponto de contato seja a menor possível. A separação dos contatos na condição de desligamento deve ser tanto maior quanto maior for a tensão para a qual o contato foi produzido. A velocidade de ligação ou desligamento deve ser a mais alta possível, para evitar o desgaste provocado pelo calor proveniente do arco voltaico, provocado no desligamento quando a carga for indutiva. O contato pode ser do tipo com trava (por exemplo, o tipo alavanca usado nos interruptores de iluminação) e também pode ser do tipo de impulso, com uma posição normal mantida por mola e uma posição contrária mantida apenas enquanto durar o impulso de atuação do contato. Nesse caso se chama fechador ou abridor conforme a posição mantida pela mola.

Fechador: Também chamado ligador, é mantido aberto por ação de uma mola e se fecha enquanto acionado. Como a mola o mantém aberto é ainda denominado normalmente aberto (ou NA ou do inglês NO).

Abridor ou ligador: é mantido fechado por ação de uma mola e se abre enquanto acionado. Como a mola o mantém fechado, é chamado também de normalmente fechado (ou NF, ou do inglês NC).

Figura 17 – Simbologia de chaves 21

O contato pode ter diversos tipos de acionamento, como por exemplo, por botão, por pedal, por alavanca, por chave (chave de tranca), por rolete por gatilho, ou ainda por ação do campo magnético de uma bobina (eletroímã), formando neste último caso um conjunto denominado contator magnético ou chave magnética.

A seguir estão os símbolos de contatos acionados por botão (os dois à esquerda), e por rolete.

Obs. Considere todos os contatos nessa apostila com atuação da esquerda para a direita quando verticais (como os acima), e de cima para baixo quando horizontais.

2.1.1 CHAVE SECCIONADORA

Figura 18 – Exemplo de Chave seccionadora e esquema interno. 2

É um dispositivo que tem por função a manobra de abertura ou desligamento dos condutores de uma instalação elétrica. A finalidade principal dessa abertura é a manutenção da instalação desligada. A chave seccionadora deve suportar, com margem de segurança, a tensão e corrente nominais da instalação, isso é normal em todos os contatos elétricos, mas nesse caso se exigem melhor margem de segurança. A seccionadora tem, por norma, seu estado -ligada ou desligada- visível externamente com clareza e segurança. Esse dispositivo de comando é construído de modo a ser impossível que se ligue (feche) por vibrações ou choques mecânicos, só podendo, portanto ser ligado ou desligado pelos meios apropriados para tais manobras. No caso de chave seccionadora tripolar, esta deve garantir o desligamento simultâneo das três fases. As seccionadoras podem ser construídas de modo a poder operar:

1.Sob carga - então denominada interruptora. A chave é quem

velocidade das operações

desligará a corrente do circuito, sendo por isso dotada de câmara de extinção do arco voltaico que se forma no desligamento e de abertura e fechamento auxiliado por molas para elevar a

♦Sem carga - neste caso o desligamento da corrente se fará por outro dispositivo, um disjuntor, de modo que a chave só deverá ser aberta com o circuito já sem corrente. Neste caso a seccionadora pode ter uma chave NA auxiliar que deve desliga o disjuntor antes que a operação de abertura da chave seja completada.

♦Com operação apenas local.

♦Com operação remota, situação na qual sua operação é motorizada.

2.2 CHAVES ROTATIVAS BLINDADAS

Existem vários tipos de chaves blindadas, cada uma para um tipo de aplicação, mas todas são dotadas de um mecanismo de desligamento, que é em sua maioria uma mola colocada sob tensão mecânica. Esta mola é tencionada no momento do acionamento e retorna a posição normal quando desacionada, fazendo com isso que os contatos móveis também sejam deslocados simultaneamente. A velocidade de abertura/fechamento é função única do mecanismo de desligamento, esse é o item mais importante nas chaves blindadas, pois, já tem definida pelo fabricante sua capacidade de ruptura e seu valor é praticamente inalterado. Essas chaves são largamente usadas na indústria, seja em painéis elétricos, seja para acionamento de motores de pequena potência. Os tipos mais comuns são: Liga/Desliga, Reversora de rotação e Partida Estrela/Triângulo.

As figuras a seguir ilustram alguns exemplos de chaves.

Figura 19 – Exemplos de chaves Rotativas blindadas. 24

As tabelas a seguir demonstram o esquema de ligação de alguns tipos de chaves, fornecido pelo fabricante. Tabela 3 – Exemplos de Chaves blindadas

Descrição Programa

Ângulo de

Manopla

FormatoGrupoNº de Celas

T-W3 (Tri- Polar)

Reversora

Ligação Direta

T-WR2 (Bi- Polar)

Reversora com

Retorno

(Parte 2 de 5)

Comentários