Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Estruturas Atômicas, Trabalhos de Aquacultura

Trabalho de Química Geral sobre os átomos e tabela periódica

Tipologia: Trabalhos

2010

Compartilhado em 23/03/2010

mauricio-pinheiro-lima-8
mauricio-pinheiro-lima-8 🇧🇷

1 documento

Pré-visualização parcial do texto

Baixe Estruturas Atômicas e outras Trabalhos em PDF para Aquacultura, somente na Docsity! FACULDADE................ QUÍMICA GERAL ESTRUTURAS ATÔMICAS E TABELA PERIÓDICA CIDADE, DATA ............................. ESTRUTURAS ATÔMICAS e TABELA PERIÓDICA Neste trabalho de pesquisa destacamos a importância do conteúdo estudado, para entender química precisamos observar a natureza e investigar minuciosamente todas as possibilidades e questionamentos possíveis, com surgimento do primeiro modelo atômico baseada na filosofia grega foi o pontapé inicial para busca perguntas que ao longo de todo o tempo foram surgindo e experimentos fantásticos e descobertas importantes para a humanidade, com o surgimento da tabela periódica os elementos químicos foram classificados e arrumados em seus devidos grupos para melhor entendimento, tudo isso apresentaremos juntamente com dados históricos e ilustrações e conteúdo atual. Toda a ciência se apóia na observação da natureza, o nosso dicionário define ciência como “conjunto organizado de conhecimentos relativos a um determinado objeto, especialmente os obtidos mediante a observação, a experiência dos fatos e um método próprio. 1-ESTRUTURA ATÔMICA Para investigar a estrutura interna de objetos do tamanho dos átomos é preciso observá-los indiretamente, por meio das propriedades da radiação eletromagnética que eles emitem. Em seguida, é preciso construir um modelo da estrutura do átomo que explique essas propriedades. A análise da radiação eletromagnética emitida ou absorvida por substâncias é um ramo da química conhecido como espectroscopia. Veremos como usar a espectroscopia atômica, a espectroscopia aplicada aos átomos – para determinar sua estrutura. 1.1-RADIAÇÃO, QUANTA E FÓTONS Quando um objeto é aquecido, ele brilha com maior intensidade – o fenômeno da incandescência e a cor da luz emitida passam sucessivamente do vermelho ao laranja e ao amarelo, até chegar ao branco. Estas são observações qualitativas. Para estudar o efeito quantitativamente, os cientistas tiveram de medir a intensidade da radiação em cada comprimento de onda e repetir as medidas em várias temperaturas diferentes. Esses experimentos provocaram uma das maiores revoluções ocorridas na ciência. A Figura 1.4 mostra alguns resultados experimentais. O “objeto quente” é conhecido como corpo negro (embora ele esteja emitindo a cor branca porque está muito quente!). O nome significa que o objeto não tem preferência em absorver ou emitir um determinado comprimento de onda em especial. As curvas na Figura 1.4 mostram a variação da intensidade da radiação do corpo negro conforme a temperatura, isto é, a radiação emitida por um corpo negro em diferentes comprimentos de onda quando a temperatura varia. Duas informações experimentais cruciais para o desenvolvimento de um modelo para a radiação do corpo negro foram descobertas no fim do século XIX. Em 1879, Josef Stefan investigava o aumento do brilho de um corpo negro quando um objeto era aquecido e descobriu que a intensidade total emitida em todos os comprimentos de onda aumentava com a quarta potência da temperatura. 1.2-DUALIDADE ONDA PARTÍCULA DA MATÉRIA Se a radiação eletromagnética, que por longo tempo foi interpretada apenas como ondas, tem caráter dual, será que a matéria, que desde a época de Dalton foi entendida como sendo constituídapor partículas, poderia ter propriedades de ondas? Em 1925, o cientista francês Louis de Broglie sugeriu que todas as partículas deveriam ser entendidas como tendo propriedades de ondas. Ele propôs, também, que o comprimento de onda associado à “onda da partícula” é inversamente proporcional à massa da partícula, m, e à velocidade, v, e que O produto da massa pela velocidade é chamado de momento linear, p, de uma partícula e, então, essa expressão pode ser escrita de forma mais simples, Esse comprimento de onda é muito pequeno para ser detectado. O mesmo se aplica a qualquer objeto macroscópico (visível) que viaje em velocidades normais. O caráter ondulatório dos elétrons pôde ser observado quando foi demonstrado que eles sofrem difração. O experimento foi realizado em 1925 por dois cientistas norte-americanos, Clinton Davisson e Lester Germer, que focalizaram um feixe de elétrons rápidos em um monocristal de níquel. O arranjo regular dos átomos do cristal, cujos núcleos estão separados por 250 pm, funciona como uma rede que difrata as ondas e eles observaram um padrão de difração. 1.3-O PRINCÍPIO DA INCERTEZA A dualidade onda-partícula não somente mudou nossa compreensão da radiação eletromagnética e da matéria, como também abalou as fundações da física clássica. Na mecânica clássica, uma partícula tem uma trajetória definida, isto é, segue um caminho em que a localização e o momento linear são especificados a cada instante. Por outro lado, não é possível especificar a localização precisa de uma partícula se ela se comporta como onda. Imagine uma onda em uma corda de violão, que se espalha por toda a corda, sem se localizar em um ponto determinado. Uma partícula com um momento linear determinado tem comprimento de onda determinado, mas, como não faz sentido falar da localização de uma onda, não é possível especificar a localização da partícula que tem um momento linear determinado. Esta dificuldade não pode ser resolvida. A dualidade onda-partícula elimina a possibilidade de descrever a localização se o momento linear é conhecido e não se pode especificar a trajetória das partículas. Se soubermos que a partícula está aqui neste instante, não podemos dizer nada sobre onde ela estará um instante depois! A impossibilidade de conhecer a posição com precisão arbitrariamente grande se o momento linear é precisamente conhecido é um aspecto da complementaridade de posição e momento, isto é, se uma propriedade é conhecida, a outra não o pode ser. O princípio da incerteza de Heisenberg expressa quantitativamente essa complementaridade. 1.4-FUNÇÕES DE ONDA E NÍVEIS DE ENERGIA Os cientistas do século XX tiveram que refazer sua descrição da matéria para levar em conta a dualidade onda-partícula. Um dos primeiros a formular uma teoria bem-sucedida foi o cientista austríaco Erwin Schrödinger, em 1927. Como as partículas têm propriedades de onda, não podemos esperar que elas se comportem como objetos pontuais que se movem em trajetórias precisas. A abordagem de Schrödinger foi substituir a trajetória precisa da partícula por uma função de onda, (a letra grega psi), uma função matemática com valores que variam com a posição. Não há nada de misterioso sobre a forma das funções de onda. Elas são funções matemáticas, como sen x, uma função que varia como uma onda, e e–x, uma função que decai exponencialmente até zero. 1.5-ESPECTROS ATÔMICOS Fortes evidências da validade da mecânica quântica vieram de sua capacidade de explicar os espectros atômicos. Quando uma corrente elétrica passa através de uma amostra de gás hidrogênio em baixa pressão, a amostra emite luz. A corrente elétrica, que é semelhante a uma tempestade de elétrons, quebra as moléculas de H2 e excita os átomos de hidrogênio livres a energias mais altas. Esses átomos excitados descarregam rapidamente o excesso de energia através da emissão de radiação eletromagnética. Em seguida, eles se recombinam para formar moléculas de H2.Quando a luz branca atravessa um prisma, obtém-se um espectro contínuo de Quando, porém, a luz emitida pelos átomos de hidrogênio excitados passa pelo prisma, verifica-se que a radiação tem um certo número de componentes ou linhas espectrais A linha mais intensa (em 656 nm) é vermelha e é possível observar que os átomos excitados o gás brilham com esta cor. Os átomos de hidrogênio excitados também emitem radiação ultravioleta e infravermelha, que são invisíveis a olho nu, mas podem ser detectadas eletrônica e fotograficamente. Fig-01 (Espectro Atômico) 1.6-ORBITAIS ATÔMICOS As funções de onda de elétrons em átomos são chamadas de orbitais atômicos. O nome foi escolhido para sugerir alguma coisa menos definida do que uma “órbita” de um elétron em torno de um núcleo e também para considerar a natureza de onda do elétron. As expressões matemáticas dos orbitais atômicos – que são soluções da equação de Schrödinger, são mais complicadas do que as funções seno da partícula em uma caixa, mas as suas características essenciais são relativamente simples. Por outro lado, nunca devemos perder de vista a interpretação de que o quadrado da função de onda é proporcional à densidade de probabilidade do elétron em cada ponto. Para visualizar essa densidade de probabilidade, imaginamos uma nuvem centrada no núcleo. A densidade da nuvem em cada ponto representa a probabilidade de encontrar o elétron naquele ponto. As regiões mais densas da nuvem, portanto, correspondem às posições em que a probabilidade de encontrar o elétron é maior. Fig-02 (Orbitais) 1.7-SPIN DO ELÉTRON 2.1-A DESCOBERTA DA LEI PERIÓDICA Dmitri Mendeleev e o alemão Lothar Meyer, trabalhando independentemente, descobriram experimentalmente a lei periódica e publicaram suas tabelas de elementos, demonstrando a variação de propriedades periódicas consequente da ordenação dos elementos adotada por eles. Em suas tabelas, ambos listaram os elementos em ordem crescente de massa atômica (na época, não se conheciam os números atômicos, só as massas atômicas). Atualmente, sabemos que a periodicidade é mais facilmente visualizada se a listagem for feita em ordem crescente do número atômico, o que ocasiona uma pequena diferença seqüencial em relação àordenação por massa atômica. O sucesso de Mendeleev e Meyer, apesar de ordenarem os elementos com base em suas massas atômicas, deve-se ao fato de que, em geral, quanto maior o número atômico, maior a massa atômica do elemento. A lei periódica estabelece que quando os elementos são listados, sequencialmente, em ordem crescente do número atômico, é observada uma repetição periódica em suas propriedades. Fig-04 (Tabela Periódica) 2.2-A PERIODICIDADE NAS CONFIGURAÇÕES ELETRÔNICAS A organização da tabela periódica está intimamente relacionada com a configuração eletrônica dos átomos. Cada período começa com um elemento que tem um elétron de valência do tipo s. No primeiro período existem apenas dois elementos, pois o orbital 1s comporta até 2 elétrons. O segundo período tem início com o lítio, pois seu terceiro elétron é do tipo 2s. Como há um orbital 2s e 3 orbitais 2p, cada um capaz de acomodar dois elétrons, é possível colocar 8 elementos neste período. O mesmo ocorre para o terceiro período com os orbitais 3s e 3p. Como foi visto no capítulo anterior, o orbital 4s tem menor energia que os orbitais 3d e por este motivo, o quarto período inicia com o potássio(4s1) e após o preenchimento do orbital 4s no cálcio, os orbitais vazios de menor energia são os cinco orbitais 3d. Como os orbitais 3d podem acomodar 10 elétrons, este período terá mais 10 elementos (metais de transição). Em seguida, o quarto período pode ser completado com o preenchimento dos 3 orbitais 4p (mais 6 elementos).No quinto período, os orbitais 5s, 4d e 5p são preenchidos em sequência. No sexto período, após o preenchimento do orbital 6s e a entrada de um elétron nos orbitais 5d, os 7 orbitais 4f são os próximos, em ordem de energia crescente, possibilitando o encaixe de 14 elementos (lantanídeos) antes do preenchimento do próximo orbital 5d. Os orbitais 5d preenchidos são sucedidos pelos 6 elementos requeridos pelos 3 orbitais 6p. O sétimo período começa com o preenchimento do orbital 7s; em seguida, um elétron é adicionado a um dos orbitais 6d. Os próximos elétrons vão para os orbitais 5f, cujos 14 elementos formam a série dos actinídeos, grupo de elementos com propriedades e estruturas eletrônicas semelhantes aos dos lantanídeos. Os átomos de um mesmo grupo (coluna) da tabela periódica apresentam os elétrons de valência com a mesma configuração e por isso são quimicamente semelhantes. Por outro lado, sempre que existir uma semelhança entre as 68 propriedades químicas dos elementos de um mesmo período, tais como entre os lantanídeos ou entre os metais de transição, os elementos quimicamente semelhantes diferem somente no número de elétrons encontrados num tipo particular de orbital, por exemplo, 4f ou 3d. 2.3-A PERIODICIDADE NAS PROPRIEDADES ATÔMICAS As propriedades químicas e físicas de um elemento são determinadas pelo número atômico e pelo número e disposição dos elétrons existentes nos orbitais. Condutividade elétrica, estrutura cristalina, energia de ionização, afinidade eletrônica são exemplos de propriedades que estão relacionadas com o comportamento químico geral dos elementos.Uma grande vantagem de uma disposição de elementos conforme a atual estrutura da tabela periódica é a facilidade de se estudar inicialmente as propriedades de um grupo de elementos e não as propriedades de todos os elementos isoladamente. 2.4-O TAMANHO DO ATOMO Esta é uma propriedade difícil de determinar, pois a probabilidade de se encontrar um elétron ainda a uma distância muito grande (tendendo ao infinito) do núcleo nunca é igual a zero, de modo que a distância “limite” do átomo é arbitrária. A distribuição da probabilidade eletrônica é afetada pelo que há ao redor do núcleo. Tabelas proporcionam uma comparação dos tamanhos relativos, geralmente obtidos da divisão exata da distância observada entre centros de átomos idênticos adjacentes. A dedução é feita da seguinte maneira: primeiramente, numa molécula de H2 a distância de ligação (distância entre os núcleos dos dois átomos ligantes). A dificuldade em determinar as medidas experimentais dos tamanhos atômicos deve-se, portanto, não à técnica de mensuração, mas sim à interpretação dos resultados, já que os raios efetivos dos átomos não são constantes. A contribuição de cada átomo na distância de ligação total depende da natureza da ligação, que por sua vez depende, em parte, das propriedades dos átomos.Considerando então raios atômicos aproximados obtidos através de medidas de distâncias inter atômicas, pode-se observar que o tamanho do átomo varia periodicamente dentro da tabela periódica, obedecendo a uma tendência geral de aumentar de cima para baixo nos grupos e diminuir da esquerda para a direita nos períodos. 2.5-O RAIO IÔNICO Um caso interessante que devemos denotar em relação ao raio de um átomo é a alteração no tamanho deste quando o átomo se transforma em um íon. O raio de um íon é chamado raio iônico. Quando comparamos um átomo neutro com seu íon,a carga efetiva do núcleo sobre os elétrons permanece constante, pois o número atômico não se altera. Porém, como o número de elétrons em um íon é sempre diferente do número de elétrons do átomo neutro, ocorrerá uma diferença no raio atômico decorrente dessa situação. Por exemplo, um átomo de sódio, cuja configuração é 1s22s22p63s1, quando perde seu elétron 3s, logicamente, perde também a terceira camada, o que leva à redução do raio. Além disso, o menor número de elétrons facilita a atração nuclear sobre a nuvem eletrônica, contribuindo para a redução do raio. Podemos generalizar que um cátion é sempre menor do que o átomo neutro que o originou. 2.6-ENERGIA DE IONIZAÇÃO Outra propriedade relacionada com a configuração eletrônica é a energia de ionização. A energia de ionização é a energia mínima necessária para remover um elétron de um átomo no seu estado fundamental e corresponde à energia requerida para a reação. A notação de estado gasoso (g) enfatiza a necessidade de que os átomos devem estar isolados um em relação aos outros. Esta energia é também a energia de ligação do último elétron a ser colocado no átomo.Uma vez o elétron completamente removido, o átomo passa a ser um íon positivo (cátion), por isso o processo é dito ionização. O elétron mais facilmente removível é aquele que possui maior energia (último a ser distribuído segundo as regras de Hund), e está menos atraído pelo núcleo. A energia para remover este primeiro elétron mais externo é denomina primeira energia de ionização. No caso de átomos com mais de um elétron removível, diz-se que a energia para remover um segundo elétron é a segunda energia de ionização.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved