(Parte 3 de 3)

Introdução à Mecânica Quântica | O caso estacionário em uma dimensão cinética e energia potencial nulas, e, portanto, com energia total também nula. Perceba que o Princípio da Incerteza impede que isso ocorra no sistema quântico: é impossível ter uma partícula parada em uma certa posição, pois ela teria, ao mesmo tempo, posição e momento bem definidos. Em outras palavras, para localizar a partícula em uma certa região, paga-se o preço de se aumentar seu momento (e, conseqüentemente, sua energia). A energia do estado fundamental do oscilador harmônico, que encontramos nesta atividade, é também conhecida como “energia de ponto zero”.

estacionário, no qual a solução da equação de Schrödinger tem a forma

Se a energia potencial de um sistema não depende do tempo, temos um sistema , em que E é a energia total e a função ψ(x) é obtida por meio da equação de Schrödinger independente do tempo. Essa equação é um exemplo de equação de autovalores, em que ψ(x) é a autofunção e E é o autovalor ou autoenergia. A variação da densidade de probabilidade em um certo ponto do espaço é descrita por uma equação de continuidade, na qual a densidade de corrente de probabilidade j(x,t) desempenha um papel crucial.

Na próxima aula, vamos resolver a equação de Schrödinger para o caso mais simples possível: quando o potencial é nulo em todo o espaço. Isso corresponde a uma partícula que não sofre os efeitos de forças externas, também chamada partícula livre.

(Parte 3 de 3)

Comentários