Fisiologia do Movimento Humano

Fisiologia do Movimento Humano

(Parte 4 de 8)

1 Esse exemplo representa uma situação ideal na qual os canais estão localizados em planos perfeitamente ortogonais entre si, sendo que essa ortogonalidade não é observada nas espécies conhecidas. A nãoortogonalidade do conjunto de canais torna impossível que apenas uma par de canais sinérgicos seja ativado ou inibido, sem ativar ou inibir os demais pares. Essa não-ortogonalidade, embora torne mais complexo o processamento da informação vestibular e sua utilização na organização de reflexos motores, não altera em nada o fato dos canais semicirculares atuarem como uma base vetorial capaz de detectar rotações quaisquer da cabeça.

Figura 13- Ativação dos canais semicirculares.

Figura 12- Transdução sensorial nas células ciliadas do sistema

As acelerações angulares que compõem os movimentos da cabeça duram, na maioria das vezes, apenas alguns segundos, ou mesmo frações de segundos. Nesse regime, a freqüência de descarga nas fibras aferentes que inervam os canais semicirculares reflete, mais de perto, não a aceleração mas a velocidade angular de rotação da cabeça. A presença de uma freqüência basal de descarga nas fibras vestibulares, que pode ser finamente modulada, faz com que o aparelho vestibular seja muito sensível aos respectivos estímulos. Por essa razão, o limiar para a detecção, pelos canais semicirculares, de uma aceleração angular é da ordem de 0,1°/s2, enquanto os órgãos otolíticos podem detectar acelerações lineares da ordem de alguns décimos de milésimos da aceleração da gravidade.

Hodologia do sistema vestibular Os corpos celulares das fibras aferentes que inervam o aparelho vestibular localizamse no gânglio de Scarpa. Os prolongamentos centrais desses neurônios bipolares, cujos prolongamentos periféricos inervam as estruturas vestibulares do labirinto, juntamse aos axônios que se originam no gânglio espiral da cóclea, constituindo o nervo vestíbulo-coclear, VIII par craniano. A porção vestibular do VIII par projeta-se, no entanto, aos núcleos vestibulares, que ocupam uma extensa porção do tronco cerebral. Esse conjunto de núcleos é composto pelos núcleos vestibulares lateral, inferior, medial e superior. Esses núcleos diferem quanto à sua estrutura citoarquitetônica e também quanto às relações hodológicas que mantêm com outras regiões do sistema nervoso, particularmente a medula espinal, os núcleos oculomotores e o cerebelo (Figura 14). Dentre as conexões vestibulares destacam-se dois sistemas de grande relevância para a integração sensório-motora: os circuitos vestíbulo-oculares e os circuitos vestíbulo- espinais.

Figura 14- Circuitos vestibulares envolvidos no controle motor dos olhos, tronco e membros.

Circuitos vestíbulo-oculares Os núcleos vestibulares medial e superior recebem aferências principalmente dos canais semicirculares, projetando-se, por intermédio do fascículo longitudinal medial, aos núcleos oculomotores, cujos motoneurônios inervam os músculos extrínsecos do olho. Movimentos oculares podem ser iniciados e controlados por diferentes subsistemas neurais, dependendo de sua natureza, voluntária ou reflexa. Por exemplo, os movimentos denominados sacádicos são desencadeados por projeções descendentes aos motoneurônios oculomotores, originadas no campo ocular frontal do córtex cerebral. No entanto, o processamento adequado da informação visual exige uma estabilidade mínima da imagem que é projetada sobre a retina. Dentre os reflexos que se destinam a manter essa estabilidade destacam-se os reflexos vestíbulo-oculares. Esse conjunto de reflexos é desencadeado por movimentos da cabeça que tenderiam a deslocar a imagem projetada na retina. Movimentos oculares compensatórios são assim deflagrados a partir da informação vestibular, sendo que os olhos tendem a se mover de tal forma a anular o deslocamento da imagem que seria provocado pelo movimento da cabeça. Por exemplo, um movimento de rotação da cabeça para a direita provoca um movimento reflexo dos olhos para a esquerda, com a mesma velocidade angular, de tal forma que, idealmente, a imagem projetada sobre a retina permanece imóvel. Assim, rotações da cabeça detectadas pelos canais semicirculares darão origem a reflexos vestíbulo-oculares, cuja função é organizar os movimentos compensatórios dos olhos, mantendo a estabilidade das imagens retinianas. O núcleo medial envia também projeções bilaterais aos níveis cervicais da medula espinal, por intermédio do trato vestíbulo-espinal medial. Essas projeções influenciam os motoneurônios medulares que inervam músculos cervicais, participando de reflexos que controlam movimentos do pescoço de maneira correlacionada e sinérgica aos movimentos oculares. É interessante notar que movimentos reflexos do pescoço deflagrados por estimulação vestibular (denominados reflexos vestíbulocólicos) terão influência sobre o próprio sistema vestibular, já que esses movimentos do pescoço serão detectados pelas estruturas labirínticas. Esse sistema de controle é por isso denominado um sistema de retroalimentação em alça fechada, o qual se distingue de um sistema em alça aberta representado pelos circuitos vestíbulooculares. Nesses últimos, a ação vestibular sobre os movimentos oculares não será realimentada ao sistema vestibular, por isso caracterizando um sistema em alça aberta.

Circuitos vestíbulo-espinais A porção ventral do núcleo vestibular lateral recebe aferências do utrículo e dos canais semicirculares, contribuindo também para os circuitos vestíbulo-oculares. A porção dorsal desse núcleo, recebendo aferências do cerebelo e da medula espinal, envia projeções ipsilaterais ao corno anterior da medula espinal, por intermédio do trato vestíbulo-espinal lateral. Essas projeções possuem um efeito facilitatório sobre motoneurônios alfa e gama que inervam os músculos dos membros, exercendo uma excitação tônica sobre músculos extensores dos membros inferiores que contribuem na manutenção da postura fundamental.

O núcleo vestibular inferior recebe aferências tanto dos canais semicirculares quanto do sáculo e utrículo, além de projeções cerebelares. Suas projeções incluem circuitos vestíbulo-espinais, integrando aferências vestibulares e cerebelares.

Existem evidências de que as conexões nesses circuitos aqui descritos apresentem um elevado grau de plasticidade, envolvendo rearranjos dos circuitos sinápticos que organizam os reflexos vestibulares. Essa plasticidade participa, por exemplo, na recuperação de patologias que envolvem o sistema vestibular, e também na adaptação a ambientes distintos do habitual, por exemplo como aquele encontrado por astronautas na ausência de campos gravitacionais.

Uma pequena porcentagem de aferências vestibulares alcançam o núcleo ventral posterior do tálamo, projetando-se daí para o córtex somatosensorial. Essa projeção pode estar envolvida na percepção consciente de determinados aspectos da posição e dos movimentos do corpo processados pelo sistema vestibular.

Sensibilidade muscular

Duas estruturas fundamentais são relacionadas à sensibilidade muscular: os fusos neuromusculares, responsáveis pela detecção do comprimento de um músculo e das variações desse comprimento ao longo do tempo; e os órgãos tendíneos de Golgi, envolvidos na sinalização da força de contração realizada pelo músculo (Figura 15). Os fusos neuromusculares, arranjados em paralelo com as fibras musculares, são estirados ou encurtados simultaneamente ao estiramento ou encurtamento do músculo, podendo então detectar essas alterações de comprimento. Os órgãos tendíneos de Golgi localizam-se na inserção tendinosa das fibras musculares, situando-se, portanto, em série com o músculo, o que o torna apropriado para a detecção da força contrátil.

Os fusos são constituídos por fibras musculares modificadas, denominadas intrafusais (em contraposição às fibras extrafusais que compõem o músculo propriamente dito), agrupadas em feixes e envoltas por uma cápsula de tecido conjuntivo (Figura 16). Cada fuso, cujo tamanho situa-se entre 5 e 10 m, é inervado por fibras sensoriais e motoras, sendo essa última inervação principalmente veiculada por motoneurônios g (gama). Já as fibras musculares extrafusais, como vimos, recebem inervação de motoneurônios a (alfa). Uma terminação periférica da fibra sensorial, enrolando-se em torno da região central de uma fibra intrafusal, forma uma estrutura denominada receptor ânuloespiral, cuja ativação se dá pelo estiramento da fibra intrafusal. Isso acontece pois o estiramento das fibras intrafusais deforma os receptores ânulo-espirais, ativando canais iônicos responsáveis pela gênese de um potencial receptor. A amplitude do potencial receptor, que aumenta com o grau de estiramento, é codificada pela freqüência de descarga dos potenciais de ação na fibra sensorial aferente.

A sensibilidade das terminações sensoriais ao estiramento pode ser aumentada pela ativação de motoneurônios g. Esses motoneurônios, inervando as extremidades de uma fibra intrafusal, promovem sua contração deformando a região central da fibra e aumentando a sensibilidade das terminações sensoriais. Em mamíferos, a maioria dos músculos possui

Figura 15- Fuso neuromuscular e órgão tendíneo de Golgi em um músculo estriado esquelético.

Figura 16- Detalhes da organização morfológica do fuso neuromuscular.

fusos neuromusculares, sendo que alguns músculos os possuem em maior densidade como, por exemplo, os músculos das mãos e pés, pescoço, e musculatura extrínseca do olho (alguns mamíferos, como cães e gatos, não possuem fusos neuromusculares nos músculos oculares extrínsecos).

Os fusos neuromusculares possuem diferentes tipos de fibras musculares intrafusais, cujas diferenças morfológicas conduzem a diferentes propriedades mecânicas. Dois tipos de fibras sensoriais inervam as fibras intrafusais: as fibras nervosas do grupo Ia formam as terminações primárias, e fibras do grupo I formam as terminações secundárias. Essas duas diferentes inervações estão associadas às diferentes propriedades mecânicas das fibras intrafusais, de tal forma que as fibras Ia são muito mais sensíveis à velocidade de variação do comprimento de um músculo. A descarga

nas fibras I aumenta gradualmente com o estiramento do músculo, refletindo essencialmente o comprimento estático do músculo.

Os órgãos tendíneos de Golgi são estruturas encapsuladas com aproximadamente 1 m de comprimento e localizados na junção entre tendão e músculo. São inervados por fibras sensoriais do grupo Ib, cujas terminações se ramificam em meio às fibras colágenas que compõem a estrutura (Figura 17). O estiramento do órgão tendíneo deforma as terminações nervosas entremeadas em suas fibras colágenas, conduzindo à sua ativação. Uma contração do músculo é muito mais eficaz como causa de um estiramento do órgão tendíneo do que um estiramento passivo do músculo. A razão para isso é que a tensão provocada por um estiramento passivo é absorvida quase completamente pelo músculo, mais complacente que a estrutura conjuntiva do órgão tendíneo. Já durante uma contração muscular, a tensão desenvolvida é diretamente transmitida ao órgão tendíneo de Golgi, conduzindo ao processo de transdução .

Vemos, portanto, que o conjunto formado pelos fusos neuromusculares e órgãos tendíneos de Golgi permite que o sistema nervoso seja continuamente suprido com informações sobre o comprimento de um músculo, as variações desse comprimento, e a tensão produzida pela contração muscular. A Figura 18 resume os principais aspectos envolvidos na detecção e codificação dessas variáveis, tanto na situação de estiramento quanto na de contração de um músculo.

Figura 17- Detalhes da organização morfológica do órgão tendíneo de Golgi.

Figura 18- Respostas de fusos neuro-musculares e órgãos tendíneos de Golgi a diferentes combinações de contração, estiramento muscular passivo e ativação gama. Em (A) observamos um estiramento passivo do músculo, onde a principal resposta é exibida pela atividade das fibras Ia e I, que inervam os fusos neuro-musculares. A ativação concomitante do motoneurônio g aumenta a atividade basal das fibras que inervam os fusos, e também sua sensibilidade a um estiramento do músculo, como evidenciado em (B). Em (C) observamos que uma contração das fibras extrafusais, produzindo um abalo muscular, pode silenciar a atividade dos fusos, porém se refletindo na maior atividade dos órgãos tendíneos de Golgi. Se, como observamos em (D), a contração do músculo for acompanhada de uma ativação dos motoneurônios g, e portanto de uma contração concomitante das fibras intrafusais, a atividade dos fusos não será anulada, sendo que esses ainda poderão sinalizar o grau de estiramento do músculo.

Uma característica fundamental da fisiologia do fuso neuromuscular é o controle eferente mediado pelos motoneurônios g. Uma das conseqüências mais óbvias desse controle é a manutenção da sensibilidade do fuso durante a contração muscular. Quando um músculo se contrai, seu encurtamento leva a uma diminuição da tensão a qual o fuso está submetido, já que este encontra-se em paralelo com as fibras extrafusais. Portanto, durante uma contração, a atividade do fuso estaria diminuída, senão totalmente abolida. No entanto, a ativação dos motoneurônios g leva à contração das fibras intrafusais, estirando a região central dessas fibras e aumentando, portanto, a sensibilidade dos receptores ânulo-espirais. Enquanto em vertebrados inferiores são os próprios motoneurônios a que inervam as fibras intrafusais, em mamíferos tem-se um controle independente, mediado pelos motoneurônios g, os quais representam cerca de 30% das fibras de uma raiz espinal ventral. Dois tipos de motoneurônios g alteram seletivamente a sensibilidade estática e dinâmica dos fusos neuromusculares. A estimulação de uma classe de motoneurônios g, denominados motoneurônios g estáticos, aumenta a descarga dos aferentes primários durante um estiramento mantido do músculo. Motoneurônios g dinâmicos, por sua vez, aumentam a resposta produzida durante a fase de estiramento, ou seja, durante alterações do comprimento do músculo. Uma co-ativação g-a garante, assim, que a detecção pelos fusos das variáveis cinemáticas de um músculo seja mantida em uma larga faixa de seu comprimento, mesmo durante o processo de contração. Dessa forma os fusos neuromusculares fornecem informações que contribuem para a execução de ajustes rápidos e dinâmicos do tônus muscular.

As informações fornecidas pelos fusos neuromusculares e órgãos tendíneos de Golgi são utilizadas na organização da motricidade, a qual depende da atividade integrada de diversas regiões do sistema nervoso, desde respostas estereotipadas emitidas pela medula espinal, até o complexo processamento de informações sensoriais e motoras pelo córtex cerebral. Informações trazidas dos músculos por aferentes Ia alcançam, além de regiões subcorticais e cerebelares, também o córtex somestésico. No entanto, parte dessa organização motora é elaborada já na própria medula espinal, onde tem origem uma séria de respostas reflexas à ativação dessas vias sensoriais.

Fibras Ia fazem conexões monossinápticas excitatórias com motoneurônios a que se destinam ao músculo de origem dessas fibras sensoriais. Excitam também motoneurônios que inervam os músculos agonistas e interneurônios que inibem os antagonistas. Essas conexões fornecem a base anatômica para os aspectos funcionais envolvidos no reflexo miotático, descrito adiante, na seção que trata da integração espinal da motricidade. Em resumo, o reflexo miotático corresponde à contração de um músculo em resposta ao seu estiramento, constituindo-se no único reflexo monossináptico conhecido em mamíferos. A contração de músculos agonistas e o relaxamento de antagonistas do músculo estirado pode ser explicada pelas conexões anatômicas descritas acima, denominadas de inervação recíproca. Fibras I, as quais partem também dos fusos neuromusculares, fazem conexões polissinápticas com motoneurônios associados ao músculo de origem, estando mais envolvidas no componente tônico do reflexo miotático. As fibras Ib, que se originam nos órgãos tendíneos de Golgi, projetam-se polissinapticamente sobre motoneurônios que inervam agonistas e antagonistas de seu músculo de origem. Essa inervação, no entanto, é funcionalmente inversa daquela promovida pelas fibras Ia, sendo inibitória sobre os agonistas e excitatória sobre os antagonistas.

(Parte 4 de 8)

Comentários