Aula 11 - CEDERJ - Introdução à Quantica

Aula 11 - CEDERJ - Introdução à Quantica

(Parte 3 de 3)

h hπ π .

EV n0

2. (a) Calcule o coeficiente de transmissão para um elétron de energia total igual a 2 eV, incidente sobre uma barreira de potencial de altura 4 eV e largura 10–10 m, usando a Equação (1.8) e, depois, usando a fórmula aproximada demonstrada na Atividade 2 desta aula. (b) Repita o cálculo para uma barreira com largura de 10–9 m.

(Eisberg-Resnick, Problema 8, Capítulo 6).

(a) Substituindo os valores numéricos nas fórmulas indicadas e lembrando que a massa do elétron vale 9,1 × 10–31 kg, obtemos T = 62%, usando a Equação (1.8), e T = 94%, usando a expressão aproximada obtida na Atividade 2. Note que, nesse caso, a barreira é bastante estreita, de modo que a probabilidade de tunelamento é alta. É por isso que não estamos no limite de validade da expressão da Atividade 2 desta aula (decaimento exponencial).

(b) Já no caso de uma largura 10 vezes maior, o valor obtido com ambas as fórmulas é de T = 2,02 × 10–6. Veja como esse aumento na largura da distância causa uma redução drástica na probabilidade de tunelamento! Nesse caso, a expressão aproximada obtida na Atividade 2 é certamente válida. Esse exemplo tem conexões com o mecanismo de funcionamento do microscópio de tunelamento, que discutiremos na próxima aula.

18 CEDERJ

Introdução à Mecânica Quântica | A barreira de potencial: casos E < V0 e E > V0

Vamos agora explorar a barreira de potencial no site http://perg.phys.ksu.edu/vqm/ AVQM%20Website/WFEApplet.html Selecione o modo Explorer no botão superior esquerdo (Mode). Escolha o número de regiões do potencial (Number of Regions) igual a 3. Escolha a largura da região central igual a 0,3 nm e o valor da energia potencial igual a 2,0 eV nessa região. Mantenha o potencial nas duas outras regiões igual a zero. Escolha 1,5 eV para a energia da partícula, assim você estará observando o efeito túnel. Selecione ainda as opções Connect from right to left, Right eigenfunction: Cexp(ikx) + Dexp(-ikx) e os coeficientes C = 1 e D = 0. Assim, estaremos simulando exatamente as situações descritas nesta aula. Outra opção interessante é clicar em Run, para observar a evolução temporal da função de onda e da densidade de probabilidade. Explore as diversas situações discutidas nesta aula.

Se uma partícula incide sobre uma barreira de potencial com energia menor ou maior que a altura do degrau, ela pode ser refletida ou transmitida. A transmissão no caso de energia menor que a barreira (efeito túnel) e a reflexão no caso de energia maior que a barreira são situações não previstas pela Mecânica Clássica. As probabilidades de transmissão e reflexão em cada caso são obtidas pelas leis da Mecânica Quântica.

Na próxima aula, vamos explorar diversos exemplos e aplicações da barreira de potencial, entre eles o microscópio de tunelamento, o diodo túnel, a emissão de partículas alfa e a fusão nuclear.

(Parte 3 de 3)

Comentários