Constantino - Química Orgânica vol. 3

Constantino - Química Orgânica vol. 3

(Parte 2 de 10)

1. Análise Orgânica 1.1. Análise Elementar contém mais de uma; neste último caso, queremos ainda saber quanto de cada substância está presente.

Problema 1.1.1. Por quais razões seria importante conhecer a pureza de uma amostra, pelo menos de forma aproximada, antes de fazer outras análises?

Se pudéssemos examinar, uma por uma, todas as moléculas de uma amostra, poderíamos dizer que “amostra pura é aquela em que todas as moléculas são iguais entre si”. Uma situação como esta, no entanto, é irreal. Na prática, dizemos que temos uma amostra 100 % pura quando não conseguimos detectar a presença de nenhuma outra substância, além daquela que constitui a amostra.

Como é que fazemos para determinar a pureza de uma amostra? Antes de mais nada, você deve considerar que a pureza pode ser determinada quantitativamente ou qualitativamente (que, na verdade, significa “quantitativamente, mas de forma aproximada, sem números”). Podemos, por exemplo, dizer que uma amostra contém 9,1 % da substância A e 0,9 % da substância B; ou podemos dizer que a mesma amostra é constituída essencialmente da substância A, contendo pequena quantidade de impureza.

Quantitativamente

Para determinar a pureza quantitativamente temos, geralmente, que recorrer aos processos de separação de misturas. É preciso separar todos os componentes da mistura e determinar a quantidade de cada um. A cromatografia, em suas várias formas (cromatografia em camada delgada, em coluna, líquido-líquido, gás-líquido, etc.) é o método mais útil e mais comumente utilizado atualmente para esta finalidade. Em alguns poucos casos especiais, porém, é necessário ou conveniente recorrer a outros processos, como destilação fracionada, etc. Quando sabemos quais são os componentes de uma mistura, porém, muitas vezes podemos fazer determinações de pureza ou de proporções sem utilizar nenhum processo de separação de misturas. Usamos, nestes casos, alguma propriedade física característica dos componentes para determinar sua relação. Evidentemente, esta “propriedade física” tem que incluir a propriedade de ter uma medida que seja proporcional à quantidade de substância.

Um exemplo pode clarear muito esta nebulosidade. Digamos que você tenha uma mistura de (–)-mentol e (–)-mentona; você sabe que sua mistura contém apenas essas duas substâncias, mas não sabe a proporção entre elas. Consultando a literatura (Simonsen & Owen, The Terpenes), você encontra a rotação específica de cada uma.

(–)-Mentol [α]D = – 49,4° (–)-Mentona

[α]D = – 29,6° Figura 1.1.1. Rotações específicas de mentol e de mentona

1. Análise Orgânica 1.1. Análise Elementar

Podemos então proceder da seguinte forma: fazemos uma solução de nossa mistura com concentração cm (g/mL) e determinamos com um bom polarímetro sua rotação αm ; sabemos que αm = [αm] . l . cm , de onde podemos calcular a rotação específica

[αm] da mistura. Chamando (–)-mentol de “a” e (–)-mentona de “b” (e continuando a chamar a mistura de “m”), as seguintes igualdades devem ser evidentes:

O que pode não ser tão evidente (e que, portanto, pode exigir um pouco de raciocínio de sua parte) são as duas igualdades a seguir:

A igualdade (4) diz apenas que a rotação óptica da mistura é igual à soma das rotações ópticas de cada um dos componentes da mistura (observe que estamos aqui falando do ângulo de rotação, aquele ângulo que foi ou poderia ter sido observado experimentalmente com um polarímetro, e não das rotações específicas). A igualdade (5) pode ser compreendida mais facilmente se você se lembrar que c é dado em g/mL, e naturalmente a massa da mistura é igual à soma das massas de seus componentes. Combinando (1), (2) e (3) com (4) e dividindo todos os termos pelo fator comum l, chegamos a:

Observe que as expressões (5) e (6) constituem um sistema de duas equações do primeiro grau com duas incógnitas (ca e cb), pois todos os demais valores que aparecem nestas expressões são conhecidos. Resolvendo o sistema para ca , obtemos:

ma c αα αα−−=.

Como exemplo, digamos que uma solução de concentração cm = 0,200 g/mL de nossa mistura de (–)-mentol e (–)-mentona apresentou um ângulo de rotação de

– 7,31° em um tubo de polarímetro de 1,0 dm. Qual a composição da mistura? Temos:

m cl αα.

ba bmmacc

A mistura em questão contém 35 % de (–)-mentol e 65 % de (–)-mentona.

1. Análise Orgânica 1.1. Análise Elementar

Problema 1.1.2. Para ter uma idéia da precisão dessas determinações, imagine que houve um erro de apenas 0,11° na determinação do ângulo de rotação do exemplo acima, e o valor correto é – 7,2° (e não – 7,31°). Qual seria então a verdadeira porcentagem de mentol na mistura?

Problema 1.1.3. Uma outra fonte de erro provém dos valores de rotações específicas da literatura. O e °−=9,28][27Dα para a mentona. Note a falta de coincidência entre temperaturas e demais condições de medidas, além da diferença entre estes e os valores dados na figura 1. Refaça os cálculos dados como exemplo no texto (αm = – 7,31°, cm = 0,20 g/mL e tubo de 1,0 dm) usando [αa] = – 50° e [αb] = – 24,8°. Qual seria a porcentagem de (–)-mentol na mistura?

Problema 1.1.4. Em Organic Syntheses Coll. Vol. 1 há um procedimento para oxidar (–)-mentol a (–)- mentona com dicromato de sódio e ácido sulfúrico.

Seguindo o procedimento exatamente, o produto não conterá mentol. No entanto, a presença de ácido sulfúrico provoca a isomerização de uma parte da mentona, formando um estereoisômero chamado

(+)-isomentona, cuja rotação específica é °+=85][Dα. (a) Qual é a estrutura da (+)-isomentona, e como foi que este composto se formou nesta reação?

(b) Se uma amostra assim preparada apresentar uma rotação óptica de 0° (c = 0,200 g/mL, tubo de 1,0 dm), que porcentagem da (–)-mentona formada sofreu isomerização a (+)- isomentona?

Problema 1.1.5. Quando se faz uma cromatografia gás-líquido, comumente chamada “cromatografia a gás”, é comum utilizar um detector de “ionização de chama”, porque ele é muito sensível e pode detectar quantidades muito pequenas de substâncias. As substâncias, separadas na coluna, saem no interior de uma chama (combustão H2 + ½ O2 → H2O), são queimadas e produzem íons que aumentam a condutividade elétrica da chama. Para um mesmo tipo de íons, a resposta do detector (isto é, o quanto a condutividade aumenta) é razoavelmente proporcional à quantidade de íons formados, mas a resposta a um tipo de íons é completamente diferente da resposta a outro tipo de íons. Sabendo disto, você acha que a cromatografia a gás (com detector de ionização de chama) pode servir para determinar a proporção de compostos variados em uma mistura?

Qualitativamente

Uma determinação qualitativa pode ser feita pelo uso de vários critérios de pureza. Um bem comumente usado é o ponto de fusão de amostras sólidas. Sabemos que amostras puras apresentam intervalos de fusão menor que 1 °C. Sabemos que uma amostra com intervalo de fusão de 5 °C deve estar menos pura do que uma amostra com intervalo de fusão de 3 °C. Mas não temos realmente nenhuma idéia muito precisa da pureza dessas amostras.

Atualmente, as espectroscopias de ressonância magnética nuclear, especialmente de 13C, podem servir de excelente critério de pureza para grande número de casos. A utilidade da RMN de 13C provém do fato de que os espectros geralmente contêm poucos picos (≈ 1 pico para cada tipo de carbono existente na molécula) e os picos são muito estreitos, aparecendo praticamente como linhas retas em

1. Análise Orgânica 1.1. Análise Elementar um espectro “normal”. Qualquer impureza presente1 costuma mostrar pequenos picos “fora de lugar”, que são facilmente visíveis. Observe a figura 2, onde os picos pequenos são de impurezas.

Referência (TMS)

Solvente (CDCl )

Figura 1.1.2. Espectro de RMN de 13C em avaliação qualitativa de pureza

Os espectros de ressonância magnética nuclear de hidrogênio são um pouco diferentes porque geralmente há muitas absorções e fica um pouco mais difícil ter certeza se um determinado sinal pertence à substância em questão ou a uma impureza. Por outro lado, a RMN de 1H apresenta a grande vantagem de produzir sinais cuja integral (a área sob os picos) é proporcional à quantidade de núcleos (1H) correspondente ao sinal. Isto significa que, nos casos em que pudermos identificar claramente um sinal pertencente a uma substância e um sinal pertencente a outra substância, podemos determinar quantitativamente a proporção entre elas. Veremos mais tarde como se faz isso.

Análise elementar qualitativa

Se soubermos que uma amostra está razoavelmente pura, podemos descobrir quais os elementos que a constituem através de reações relativamente simples.

Na maioria dos casos comuns, porém, não é necessário fazer análises qualitativas de compostos orgânicos, por várias razões.

1. A análise quantitativa de C, H, N, S é relativamente simples de fazer (veja adiante): se a análise quantitativa mostra a presença desses elementos, é claro que eles estão presentes, e não precisamos da análise qualitativa para mostrar isto.

2. É comum que, considerando a procedência da amostra (de onde ela veio, como foi preparada, etc.), possamos já ter uma idéia razoável de sua constituição (por exemplo, um líquido que tenha sido obtido por

1 Impureza que contenha carbono, naturalmente.

1. Análise Orgânica 1.1. Análise Elementar destilação a vapor de folhas de eucalipto, que seja insolúvel em água e solúvel em compostos orgânicos, deve ser um composto orgânico, e não precisamos realmente analisá-lo para ver se contém carbono e hidrogênio; podemos mandá-lo diretamente para a análise quantitativa).

3. Os métodos espectroscópicos e espectrométricos podem dar grande número de informações (por exemplo, se uma substância apresenta sinais no espectro de RMN de 13C, é claro que deve conter carbono!) que, combinadas com informações sobre a procedência da amostra, dispensam a necessidade de análise qualitativa.

No entanto, você deve compreender claramente que essas simplificações referem-se apenas a operações rotineiras. As simplificações baseiam-se em resultados de análises feitas anteriormente por grande número de químicos, e precisamos ter pelo menos uma idéia de como fazer a análise completa para podermos nos orientar nos casos mais difíceis.

Carbono e hidrogênio

A presença de carbono e hidrogênio pode ser determinada por combustão.

Substâncias orgânicas são inflamáveis, e quando reagem com oxigênio formam CO2 e

H2O. Ao invés de usarmos oxigênio, podemos aquecer a substância orgânica previamente misturada com grande quantidade de óxido de cobre. A presença de água no gás que sai da reação pode ser verificada pela formação de gotículas de água na parte mais fria do tubo ou, melhor, passando o gás através de sulfato de cobre anidro; se houver água, o sulfato de cobre se tornará azul. A presença de gás carbônico se demonstra pela turvação de uma solução de hidróxido de bário (precipitação de carbonato de bário). Espectroscopicamente, podemos verificar se a amostra contém carbono e hidrogênio pelo simples fato de observarmos a presença de sinais nos espectros de RMN de 13C e de 1H.

(Parte 2 de 10)

Comentários