Instrumentação industrial

Instrumentação industrial

(Parte 6 de 10)

A principal característica dos sensores capacitivos é a completa eliminação dos sistemas de alavancas na transferência da força/deslocamento entre o processo e o sensor.

Este tipo de sensor resume-se na deformação pelo processo de uma das armaduras do capacitor. Tal deformação altera o valor da capacitância total que é medida por um circuito eletrônico. Esta montagem, se por um lado, elimina os problemas mecânicos das partes móveis, expõe a célula capacitiva às rudes condições do processo, principalmente a temperatura. Este inconveniente pode ser superado através de circuitos sensíveis à temperatura montados junto ao sensor.

Outra característica inerente à montagem é a falta de linearidade entre a capacitância e a distância das armaduras, devido á deformação não linear. Neste caso, faz-se necessário uma compensação (linearização) a cargo do circuito eletrônico.

Figura 2.12 – Sensor capacitivo

A figura 2.12 mostra um sensor capacitivo típico e a figura 2.13 mostra o desenho esquemático de uma célula capacitiva composta de dois capacitores variáveis.

Figura 2.13 – Esquema de um sensor capacitivo

O elemento elástico, geralmente um diafragma metálico de aço inoxidável, sofre uma deformação que é proporcional à pressão diferencial aplicada. As capacitâncias da célula são medidas através de uma ponte capacitiva alimentada por uma tensão alternada de alta freqüência (10KHz, por exemplo). A tensão de desequilíbrio da ponte (tensão de saída) é função das variações das capacitâncias, que é proporcional à deflexão do diafragma.

2.2.3.6. Tipo Strain Gauge

Baseia-se no princípio de variação da resistência de um fio, mudando-se as suas dimensões.

Para variarmos a resistência de um condutor devemos analisar a equação geral da resistência:

Onde

R : Resistência do condutor ρρρρ : Resistividade do material L : Comprimento do condutor S : Área da seção transversal

O sensor consiste de um fio firmemente colado sobre uma lâmina de base, dobrandose tão compacto quanto possível. Esta montagem denomina-se tira extensiométrica, como vemos na figura 2.14:

Figura 2.14 – Sensor tipo Strain Gauge Observa-se que o fio (figura 2.15), apesar de solidamente ligado a lâmina de base,

Figura 2.15 – Sensor tipo Strain Gauge precisa estar eletricamente isolado da mesma. Uma das extremidades da lâmina é fixada em um ponto de apoio rígido, enquanto a outra extremidade será o ponto de aplicação de força.

Da física tradicional, sabemos que um material, ao sofrer uma flexão, tem suas fibras internas submetidas a dois tipos de deformação: tração e compressão.

Notamos que a ligação ideal para um Strain Gauge com quatro tiras extensiométricas é o circuito em ponte de Wheatstone (como mostrado na figura 2.16), que tem a vantagem adicional de compensar as variações de temperatura ambiente, pois todos os elementos estão montados em um único bloco.

Figura 2.16 – Ponte de Wheatstone com sensor Strain Gauge

2.2.3.7. Sensor por Silício Ressonante

O sensor consiste de uma cápsula de silício colocada estrategicamente em um diafragma, utilizando-se do diferencial de pressão para vibrar em maior ou menor intensidade, a fim de que essa freqüência seja proporcional à pressão aplicada.

A figura 2.17 ilustra, esquematicamente, formas de montagem de sensores de silício ressonante.

Figura 2.17 – Sensor de silício ressonante

A figura 2.18 exibe com maiores detalhes os componentes de uma célula de pressão de silício ressonante, propiciando uma boa noção da sua construção.

Figura 2.18 – Célula de pressão de silício ressonante

2.2.3.8. Tipo Piezelétrico

Os elementos piezelétricos são cristais (como o quartzo, a turmalina e o titanato) que acumulam cargas elétricas em certas áreas da estrutura cristalina, quando sofrem uma deformação física por ação de uma pressão. São elementos pequenos e de construção robusta, seu sinal de resposta é linear com a variação de pressão e são capazes de fornecer sinais de altíssimas freqüências de milhões de ciclos por segundo.

O efeito piezelétrico é um fenômeno reversível. Se for conectado a um potencial elétrico, resultará em uma correspondente alteração da forma cristalina. Este efeito é altamente estável e exato e por isso é utilizado em relógios de precisão.

A carga devida à alteração da forma é gerada sem energia auxiliar, uma vez que o quartzo é um elemento transmissor ativo. Esta carga é conectada à entrada de um amplificador, sendo indicada ou convertida em um sinal de saída para tratamento posterior. A figura 2.19 ilustra, esquematicamente, um sensor tipo piezelétrico.

Figura 2.19 – Sensor piezelétrico

3. TEMPERATURA

3.1. CONCEITOS FUNDAMENTAIS

Todas as substâncias são constituídas de pequenas partículas (moléculas) que se encontram em contínuo movimento. Quanto mais rápido o movimento das moléculas, mais quente se apresenta o corpo; quanto mais lento o movimento das moléculas, mais frio se apresenta o corpo. Então, define-se temperatura como o grau de agitação térmica das moléculas.

Na prática, a temperatura é representada em uma escala numérica, na qual quanto maior o seu valor, maior é a agitação das moléculas do corpo em questão.

O instrumento usado para medir temperatura é o termômetro. Por exemplo, usamos o termômetro para saber se uma pessoa está com febre, porque, com a medida do termômetro, sabemos se o corpo da pessoa está mais quente do que normal. Também com o termômetro, podemos verificar qual é a temperatura do ambiente: quanto mais fria uma noite, menor a temperatura mostrada pelo termômetro.

Um conceito que se confunde às vezes com o de temperatura é o de calor. Entretanto, calor é energia em trânsito ou a forma de energia que é transferida através da fronteira de um sistema em virtude da diferença de temperatura.

3.1.1. Transmissão de Calor

A literatura geralmente reconhece três meios distintos de transmissão de calor: condução, irradiação e convecção.

É um processo pelo qual o calor flui de uma região de alta temperatura para outra de temperatura mais baixa, dentro de um meio sólido, líquido ou gasoso, ou entre meios diferentes em contato físico direto.

É o processo de transmissão de calor através de ondas eletromagnéticas (ondas de calor). A energia emitida por um corpo (energia radiante) propaga-se até o outro, através do espaço que os separa.

Sendo uma transmissão de calor através de ondas eletromagnéticas, a radiação não exige a presença do meio material para ocorrer, isto é, a radiação ocorre no vácuo e também em meios materiais. Entretanto, não são todos os meios materiais que permitem a propagação das ondas de calor através deles.

Toda energia radiante (transportada por onda de rádio, infravermelha, ultravioleta, luz visível, raios x, raio gama, etc.) pode converter-se em energia térmica por absorção. Porém, só as radiações infravermelhas são chamadas de ondas de calor.

Consideremos uma sala na qual liga-se um aquecedor elétrico em sua parte inferior. O ar em torno do aquecedor se aquece, tornando-se menos denso que o restante, havendo uma troca de posição do ar quente que sobe e o ar frio que desce. A esse movimento de massas de fluido chamamos convecção, e as correntes de ar formadas são correntes de convecção. Outros exemplos de convecção são os fluxos das chaminés, o funcionamento dos radiadores e as correntes atmosféricas. Portanto, convecção é um movimento de massas de fluido, trocando de posição entre si. Notemos que não tem significado falar em convecção no vácuo ou em um sólido, isto é, convecção só ocorre nos fluidos.

3.1.2. Medição de Temperatura

O objetivo de se medir e controlar as diversas variáveis físicas em processos industriais é obter produtos de alta qualidade, com melhores condições de rendimento e segurança, a custos compatíveis com as necessidades do mercado consumidor.

Nos diversos segmentos de mercado (químico, petroquímico, siderúrgico, cerâmico, papel e celulose, farmacêutico, vidreiro, alimentício, hidrelétrico, nuclear entre outros) a monitoração da variável temperatura é fundamental para a obtenção do produto final especificado.

Termometria significa "Medição de Temperatura". Eventualmente o termo Pirometria é também aplicado com o mesmo significado, porém, baseando-se na etimologia das palavras, podemos definir:

• PIROMETRIA - Medição de altas temperaturas, na faixa onde os efeitos de radiação térmica passam a se manifestar.

• CRIOMETRIA - Medição de baixas temperaturas, ou seja, aquelas próximas ao zero absoluto de temperatura.

• TERMOMETRIA - Termo mais abrangente que incluiria tanto a Pirometria como a Criometria, que seriam casos particulares de medição.

A diferença entre a temperatura de dois corpos determina a capacidade de troca de calor entre eles. Dois corpos distintos trocarão calor até que estejam em equilíbrio térmico, ou seja, até que se igualem as suas temperaturas. Este é o princípio básico da maioria dos medidores de temperatura.

(Parte 6 de 10)

Comentários